Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.execution.datasources

import org.apache.spark.sql.execution.datasources.csv.CSVFileFormat
import org.apache.spark.sql.execution.datasources.json.JsonFileFormat
import org.apache.spark.sql.execution.datasources.orc.OrcFileFormat
import org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat
import org.apache.spark.sql.types._


object DataSourceUtils {

/**
* Verify if the schema is supported in datasource in write path.
*/
def verifyWriteSchema(format: FileFormat, schema: StructType): Unit = {
verifySchema(format, schema, isReadPath = false)
}

/**
* Verify if the schema is supported in datasource in read path.
*/
def verifyReadSchema(format: FileFormat, schema: StructType): Unit = {
verifySchema(format, schema, isReadPath = true)
}

/**
* Verify if the schema is supported in datasource. This verification should be done
* in a driver side, e.g., `prepareWrite`, `buildReader`, and `buildReaderWithPartitionValues`
* in `FileFormat`.
*
* Unsupported data types of csv, json, orc, and parquet are as follows;
* csv -> R/W: Interval, Null, Array, Map, Struct
* json -> W: Interval
* orc -> W: Interval, Null
* parquet -> R/W: Interval, Null
*/
private def verifySchema(format: FileFormat, schema: StructType, isReadPath: Boolean): Unit = {
def throwUnsupportedException(dataType: DataType): Unit = {
throw new UnsupportedOperationException(
s"$format data source does not support ${dataType.simpleString} data type.")
}

def verifyType(dataType: DataType): Unit = dataType match {
case BooleanType | ByteType | ShortType | IntegerType | LongType | FloatType | DoubleType |
StringType | BinaryType | DateType | TimestampType | _: DecimalType =>

// All the unsupported types for CSV
case _: NullType | _: CalendarIntervalType | _: StructType | _: ArrayType | _: MapType
if format.isInstanceOf[CSVFileFormat] =>
throwUnsupportedException(dataType)

case st: StructType => st.foreach { f => verifyType(f.dataType) }

case ArrayType(elementType, _) => verifyType(elementType)

case MapType(keyType, valueType, _) =>
verifyType(keyType)
verifyType(valueType)

case udt: UserDefinedType[_] => verifyType(udt.sqlType)

// Interval type not supported in all the write path
case _: CalendarIntervalType if !isReadPath =>
throwUnsupportedException(dataType)

// JSON and ORC don't support an Interval type, but we pass it in read pass
// for back-compatibility.
case _: CalendarIntervalType if format.isInstanceOf[JsonFileFormat] ||
format.isInstanceOf[OrcFileFormat] =>

// Interval type not supported in the other read path
case _: CalendarIntervalType =>
throwUnsupportedException(dataType)

// For JSON & ORC backward-compatibility
case _: NullType if format.isInstanceOf[JsonFileFormat] ||
(isReadPath && format.isInstanceOf[OrcFileFormat]) =>

// Null type not supported in the other path
case _: NullType =>
throwUnsupportedException(dataType)

// We keep this default case for safeguards
case _ => throwUnsupportedException(dataType)
}

schema.foreach(field => verifyType(field.dataType))
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ class CSVFileFormat extends TextBasedFileFormat with DataSourceRegister {
job: Job,
options: Map[String, String],
dataSchema: StructType): OutputWriterFactory = {
CSVUtils.verifySchema(dataSchema)
DataSourceUtils.verifyWriteSchema(this, dataSchema)
val conf = job.getConfiguration
val csvOptions = new CSVOptions(
options,
Expand Down Expand Up @@ -98,7 +98,7 @@ class CSVFileFormat extends TextBasedFileFormat with DataSourceRegister {
filters: Seq[Filter],
options: Map[String, String],
hadoopConf: Configuration): (PartitionedFile) => Iterator[InternalRow] = {
CSVUtils.verifySchema(dataSchema)
DataSourceUtils.verifyReadSchema(this, dataSchema)
val broadcastedHadoopConf =
sparkSession.sparkContext.broadcast(new SerializableConfiguration(hadoopConf))

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -117,25 +117,6 @@ object CSVUtils {
}
}

/**
* Verify if the schema is supported in CSV datasource.
*/
def verifySchema(schema: StructType): Unit = {
def verifyType(dataType: DataType): Unit = dataType match {
case ByteType | ShortType | IntegerType | LongType | FloatType |
DoubleType | BooleanType | _: DecimalType | TimestampType |
DateType | StringType =>

case udt: UserDefinedType[_] => verifyType(udt.sqlType)

case _ =>
throw new UnsupportedOperationException(
s"CSV data source does not support ${dataType.simpleString} data type.")
}

schema.foreach(field => verifyType(field.dataType))
}

/**
* Sample CSV dataset as configured by `samplingRatio`.
*/
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,8 @@ class JsonFileFormat extends TextBasedFileFormat with DataSourceRegister {
job: Job,
options: Map[String, String],
dataSchema: StructType): OutputWriterFactory = {
DataSourceUtils.verifyWriteSchema(this, dataSchema)

val conf = job.getConfiguration
val parsedOptions = new JSONOptions(
options,
Expand Down Expand Up @@ -96,6 +98,8 @@ class JsonFileFormat extends TextBasedFileFormat with DataSourceRegister {
filters: Seq[Filter],
options: Map[String, String],
hadoopConf: Configuration): PartitionedFile => Iterator[InternalRow] = {
DataSourceUtils.verifyReadSchema(this, dataSchema)

val broadcastedHadoopConf =
sparkSession.sparkContext.broadcast(new SerializableConfiguration(hadoopConf))

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,8 @@ class OrcFileFormat
job: Job,
options: Map[String, String],
dataSchema: StructType): OutputWriterFactory = {
DataSourceUtils.verifyWriteSchema(this, dataSchema)

val orcOptions = new OrcOptions(options, sparkSession.sessionState.conf)

val conf = job.getConfiguration
Expand Down Expand Up @@ -141,6 +143,8 @@ class OrcFileFormat
filters: Seq[Filter],
options: Map[String, String],
hadoopConf: Configuration): (PartitionedFile) => Iterator[InternalRow] = {
DataSourceUtils.verifyReadSchema(this, dataSchema)

if (sparkSession.sessionState.conf.orcFilterPushDown) {
OrcFilters.createFilter(dataSchema, filters).foreach { f =>
OrcInputFormat.setSearchArgument(hadoopConf, f, dataSchema.fieldNames)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,7 @@ class ParquetFileFormat
job: Job,
options: Map[String, String],
dataSchema: StructType): OutputWriterFactory = {
DataSourceUtils.verifyWriteSchema(this, dataSchema)

val parquetOptions = new ParquetOptions(options, sparkSession.sessionState.conf)

Expand Down Expand Up @@ -302,6 +303,8 @@ class ParquetFileFormat
filters: Seq[Filter],
options: Map[String, String],
hadoopConf: Configuration): (PartitionedFile) => Iterator[InternalRow] = {
DataSourceUtils.verifyReadSchema(this, dataSchema)

hadoopConf.set(ParquetInputFormat.READ_SUPPORT_CLASS, classOf[ParquetReadSupport].getName)
hadoopConf.set(
ParquetReadSupport.SPARK_ROW_REQUESTED_SCHEMA,
Expand Down
Loading