Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 21 additions & 4 deletions python/pyspark/ml/regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -1376,17 +1376,20 @@ class GeneralizedLinearRegression(JavaEstimator, HasLabelCol, HasFeaturesCol, Ha
typeConverter=TypeConverters.toFloat)
solver = Param(Params._dummy(), "solver", "The solver algorithm for optimization. Supported " +
"options: irls.", typeConverter=TypeConverters.toString)
offsetCol = Param(Params._dummy(), "offsetCol", "The offset column name. If this is not set " +
"or empty, we treat all instance offsets as 0.0",
typeConverter=TypeConverters.toString)

@keyword_only
def __init__(self, labelCol="label", featuresCol="features", predictionCol="prediction",
family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6,
regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None,
variancePower=0.0, linkPower=None):
variancePower=0.0, linkPower=None, offsetCol=None):
"""
__init__(self, labelCol="label", featuresCol="features", predictionCol="prediction", \
family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, \
regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, \
variancePower=0.0, linkPower=None)
variancePower=0.0, linkPower=None, offsetCol=None)
"""
super(GeneralizedLinearRegression, self).__init__()
self._java_obj = self._new_java_obj(
Expand All @@ -1402,12 +1405,12 @@ def __init__(self, labelCol="label", featuresCol="features", predictionCol="pred
def setParams(self, labelCol="label", featuresCol="features", predictionCol="prediction",
family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6,
regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None,
variancePower=0.0, linkPower=None):
variancePower=0.0, linkPower=None, offsetCol=None):
"""
setParams(self, labelCol="label", featuresCol="features", predictionCol="prediction", \
family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, \
regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, \
variancePower=0.0, linkPower=None)
variancePower=0.0, linkPower=None, offsetCol=None)
Sets params for generalized linear regression.
"""
kwargs = self._input_kwargs
Expand Down Expand Up @@ -1486,6 +1489,20 @@ def getLinkPower(self):
"""
return self.getOrDefault(self.linkPower)

@since("2.3.0")
def setOffsetCol(self, value):
"""
Sets the value of :py:attr:`offsetCol`.
"""
return self._set(offsetCol=value)

@since("2.3.0")
def getOffsetCol(self):
"""
Gets the value of offsetCol or its default value.
"""
return self.getOrDefault(self.offsetCol)


class GeneralizedLinearRegressionModel(JavaModel, JavaPredictionModel, JavaMLWritable,
JavaMLReadable):
Expand Down
14 changes: 14 additions & 0 deletions python/pyspark/ml/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -1291,6 +1291,20 @@ def test_tweedie_distribution(self):
self.assertTrue(np.allclose(model2.coefficients.toArray(), [-0.6667, 0.5], atol=1E-4))
self.assertTrue(np.isclose(model2.intercept, 0.6667, atol=1E-4))

def test_offset(self):

df = self.spark.createDataFrame(
[(0.2, 1.0, 2.0, Vectors.dense(0.0, 5.0)),
(0.5, 2.1, 0.5, Vectors.dense(1.0, 2.0)),
(0.9, 0.4, 1.0, Vectors.dense(2.0, 1.0)),
(0.7, 0.7, 0.0, Vectors.dense(3.0, 3.0))], ["label", "weight", "offset", "features"])

glr = GeneralizedLinearRegression(family="poisson", weightCol="weight", offsetCol="offset")
model = glr.fit(df)
self.assertTrue(np.allclose(model.coefficients.toArray(), [0.664647, -0.3192581],
atol=1E-4))
self.assertTrue(np.isclose(model.intercept, -1.561613, atol=1E-4))


class FPGrowthTests(SparkSessionTestCase):
def setUp(self):
Expand Down