Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -5,3 +5,4 @@ org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat
org.apache.spark.sql.execution.datasources.text.TextFileFormat
org.apache.spark.sql.execution.streaming.ConsoleSinkProvider
org.apache.spark.sql.execution.streaming.TextSocketSourceProvider
org.apache.spark.sql.execution.streaming.RateSourceProvider
Original file line number Diff line number Diff line change
@@ -0,0 +1,243 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.execution.streaming

import java.io._
import java.nio.charset.StandardCharsets
import java.util.concurrent.TimeUnit

import org.apache.commons.io.IOUtils

import org.apache.spark.internal.Logging
import org.apache.spark.network.util.JavaUtils
import org.apache.spark.sql.{DataFrame, SQLContext}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.util.{CaseInsensitiveMap, DateTimeUtils}
import org.apache.spark.sql.sources.{DataSourceRegister, StreamSourceProvider}
import org.apache.spark.sql.types._
import org.apache.spark.util.{ManualClock, SystemClock}

/**
* A source that generates increment long values with timestamps. Each generated row has two
* columns: a timestamp column for the generated time and an auto increment long column starting
* with 0L.
*
* This source supports the following options:
* - `rowsPerSecond` (e.g. 100, default: 1): How many rows should be generated per second.
* - `rampUpTime` (e.g. 5s, default: 0s): How long to ramp up before the generating speed
* becomes `rowsPerSecond`. Using finer granularities than seconds will be truncated to integer
* seconds.
* - `numPartitions` (e.g. 10, default: Spark's default parallelism): The partition number for the
* generated rows. The source will try its best to reach `rowsPerSecond`, but the query may
* be resource constrained, and `numPartitions` can be tweaked to help reach the desired speed.
*/
class RateSourceProvider extends StreamSourceProvider with DataSourceRegister {

override def sourceSchema(
sqlContext: SQLContext,
schema: Option[StructType],
providerName: String,
parameters: Map[String, String]): (String, StructType) =
(shortName(), RateSourceProvider.SCHEMA)

override def createSource(
sqlContext: SQLContext,
metadataPath: String,
schema: Option[StructType],
providerName: String,
parameters: Map[String, String]): Source = {
val params = CaseInsensitiveMap(parameters)

val rowsPerSecond = params.get("rowsPerSecond").map(_.toLong).getOrElse(1L)
if (rowsPerSecond <= 0) {
throw new IllegalArgumentException(
s"Invalid value '${params("rowsPerSecond")}'. The option 'rowsPerSecond' " +
"must be positive")
}

val rampUpTimeSeconds =
params.get("rampUpTime").map(JavaUtils.timeStringAsSec(_)).getOrElse(0L)
if (rampUpTimeSeconds < 0) {
throw new IllegalArgumentException(
s"Invalid value '${params("rampUpTime")}'. The option 'rampUpTime' " +
"must not be negative")
}

val numPartitions = params.get("numPartitions").map(_.toInt).getOrElse(
sqlContext.sparkContext.defaultParallelism)
if (numPartitions <= 0) {
throw new IllegalArgumentException(
s"Invalid value '${params("numPartitions")}'. The option 'numPartitions' " +
"must be positive")
}

new RateStreamSource(
sqlContext,
metadataPath,
rowsPerSecond,
rampUpTimeSeconds,
numPartitions,
params.get("useManualClock").map(_.toBoolean).getOrElse(false) // Only for testing
)
}
override def shortName(): String = "rate"
}

object RateSourceProvider {
val SCHEMA =
StructType(StructField("timestamp", TimestampType) :: StructField("value", LongType) :: Nil)

val VERSION = 1
}

class RateStreamSource(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

should we add a InterfaceStability.Evolving? I don't know where we use those. Just in case we change the namings, etc

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't think so. The class won't appear in the public Scaladoc/Javadoc. The user cannot see this tag in any place unless they jump to this file.

sqlContext: SQLContext,
metadataPath: String,
rowsPerSecond: Long,
rampUpTimeSeconds: Long,
numPartitions: Int,
useManualClock: Boolean) extends Source with Logging {

import RateSourceProvider._
import RateStreamSource._

val clock = if (useManualClock) new ManualClock else new SystemClock

private val maxSeconds = Long.MaxValue / rowsPerSecond

if (rampUpTimeSeconds > maxSeconds) {
throw new ArithmeticException(
s"Integer overflow. Max offset with $rowsPerSecond rowsPerSecond" +
s" is $maxSeconds, but 'rampUpTimeSeconds' is $rampUpTimeSeconds.")
}

private val startTimeMs = {
val metadataLog =
new HDFSMetadataLog[LongOffset](sqlContext.sparkSession, metadataPath) {
override def serialize(metadata: LongOffset, out: OutputStream): Unit = {
val writer = new BufferedWriter(new OutputStreamWriter(out, StandardCharsets.UTF_8))
writer.write("v" + VERSION + "\n")
writer.write(metadata.json)
writer.flush
}

override def deserialize(in: InputStream): LongOffset = {
val content = IOUtils.toString(new InputStreamReader(in, StandardCharsets.UTF_8))
// HDFSMetadataLog guarantees that it never creates a partial file.
assert(content.length != 0)
if (content(0) == 'v') {
val indexOfNewLine = content.indexOf("\n")
if (indexOfNewLine > 0) {
val version = parseVersion(content.substring(0, indexOfNewLine), VERSION)
LongOffset(SerializedOffset(content.substring(indexOfNewLine + 1)))
} else {
throw new IllegalStateException(
s"Log file was malformed: failed to detect the log file version line.")
}
} else {
throw new IllegalStateException(
s"Log file was malformed: failed to detect the log file version line.")
}
}
}

metadataLog.get(0).getOrElse {
val offset = LongOffset(clock.getTimeMillis())
metadataLog.add(0, offset)
logInfo(s"Start time: $offset")
offset
}.offset
}

/** When the system time runs backward, "lastTimeMs" will make sure we are still monotonic. */
@volatile private var lastTimeMs = startTimeMs

override def schema: StructType = RateSourceProvider.SCHEMA

override def getOffset: Option[Offset] = {
val now = clock.getTimeMillis()
if (lastTimeMs < now) {
lastTimeMs = now
}
Some(LongOffset(TimeUnit.MILLISECONDS.toSeconds(lastTimeMs - startTimeMs)))
}

override def getBatch(start: Option[Offset], end: Offset): DataFrame = {
val startSeconds = start.flatMap(LongOffset.convert(_).map(_.offset)).getOrElse(0L)
val endSeconds = LongOffset.convert(end).map(_.offset).getOrElse(0L)
assert(startSeconds <= endSeconds, s"startSeconds($startSeconds) > endSeconds($endSeconds)")
if (endSeconds > maxSeconds) {
throw new ArithmeticException("Integer overflow. Max offset with " +
s"$rowsPerSecond rowsPerSecond is $maxSeconds, but it's $endSeconds now.")
}
// Fix "lastTimeMs" for recovery
if (lastTimeMs < TimeUnit.SECONDS.toMillis(endSeconds) + startTimeMs) {
lastTimeMs = TimeUnit.SECONDS.toMillis(endSeconds) + startTimeMs
}
val rangeStart = valueAtSecond(startSeconds, rowsPerSecond, rampUpTimeSeconds)
val rangeEnd = valueAtSecond(endSeconds, rowsPerSecond, rampUpTimeSeconds)
logDebug(s"startSeconds: $startSeconds, endSeconds: $endSeconds, " +
s"rangeStart: $rangeStart, rangeEnd: $rangeEnd")

if (rangeStart == rangeEnd) {
return sqlContext.internalCreateDataFrame(sqlContext.sparkContext.emptyRDD, schema)
}

val localStartTimeMs = startTimeMs + TimeUnit.SECONDS.toMillis(startSeconds)
val relativeMsPerValue =
TimeUnit.SECONDS.toMillis(endSeconds - startSeconds).toDouble / (rangeEnd - rangeStart)

val rdd = sqlContext.sparkContext.range(rangeStart, rangeEnd, 1, numPartitions).map { v =>
val relative = math.round((v - rangeStart) * relativeMsPerValue)
InternalRow(DateTimeUtils.fromMillis(relative + localStartTimeMs), v)
}
sqlContext.internalCreateDataFrame(rdd, schema)
}

override def stop(): Unit = {}

override def toString: String = s"RateSource[rowsPerSecond=$rowsPerSecond, " +
s"rampUpTimeSeconds=$rampUpTimeSeconds, numPartitions=$numPartitions]"
}

object RateStreamSource {

/** Calculate the end value we will emit at the time `seconds`. */
def valueAtSecond(seconds: Long, rowsPerSecond: Long, rampUpTimeSeconds: Long): Long = {
// E.g., rampUpTimeSeconds = 4, rowsPerSecond = 10
// Then speedDeltaPerSecond = 2
//
// seconds = 0 1 2 3 4 5 6
// speed = 0 2 4 6 8 10 10 (speedDeltaPerSecond * seconds)
// end value = 0 2 6 12 20 30 40 (0 + speedDeltaPerSecond * seconds) * (seconds + 1) / 2
val speedDeltaPerSecond = rowsPerSecond / (rampUpTimeSeconds + 1)
if (seconds <= rampUpTimeSeconds) {
// Calculate "(0 + speedDeltaPerSecond * seconds) * (seconds + 1) / 2" in a special way to
// avoid overflow
if (seconds % 2 == 1) {
(seconds + 1) / 2 * speedDeltaPerSecond * seconds
} else {
seconds / 2 * speedDeltaPerSecond * (seconds + 1)
}
} else {
// rampUpPart is just a special case of the above formula: rampUpTimeSeconds == seconds
val rampUpPart = valueAtSecond(rampUpTimeSeconds, rowsPerSecond, rampUpTimeSeconds)
rampUpPart + (seconds - rampUpTimeSeconds) * rowsPerSecond
}
}
}
Loading