-
Notifications
You must be signed in to change notification settings - Fork 28.9k
[SPARK-19522] Fix executor memory in local-cluster mode #16975
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
|
Test build #73058 has finished for PR 16975 at commit
|
| OptionAssigner(args.executorCores, STANDALONE | YARN, ALL_DEPLOY_MODES, | ||
| sysProp = "spark.executor.cores"), | ||
| OptionAssigner(args.executorMemory, STANDALONE | MESOS | YARN, ALL_DEPLOY_MODES, | ||
| OptionAssigner(args.executorMemory, ALL_CLUSTER_MGRS, ALL_DEPLOY_MODES, |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is the change in SparkContext needed? Seems like this should be all that's needed.
As far as I understand, the last value in the local-cluster master is the amount of memory the worker has available; you may, for whatever reason, want to run executors with less than that, which your change doesn't seem to allow.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
If this were the only change then specifying local-cluster[2,1,2048] doesn't actually do anything because we're not setting spark.executor.memory=2048mb anywhere. You could do --master local-cluster[2,1,2048] --conf spark.executor.memory=2048mb but that's cumbersome and now there are two ways to set the executor memory.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You may, for whatever reason, want to run executors with less than that, which your change doesn't seem to allow.
Yeah, I thought about this long and hard but I just couldn't come up with a case where you would possibly want the worker size to be different from executor size in local-cluster mode. If you want to launch 5 workers (2GB), each with 2 executors (1GB), then you might as well just launch 10 executors (1GB) or run real standalone mode locally. I think it's better to fix the out-of-the-box case than to try to cover all potentially non-existent corner cases.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Well, it would make local-cluster[] work like any other master, where you have to explicitly set the executor memory. I understand the desire to simplify things, but this is doing it at the cost of being inconsistent with other cluster managers.
(e.g. the same command line with a different master would behave differently - you'd fall back to having 1g of memory for executors instead of whatever was defined in the local-cluster string.)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
(Anyway, either way is probably fine, so go with your judgement. It just seems like a lot of code in SparkContext just to support that use case.)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The inconsistency is already inherent with the parameters in local-cluster[], so I'm not introducing it here with this change. I personally think it's a really bad interface to force the user set executor memory in two different places and require that these two values match.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
also we're talking about a net addition of 7 LOC in SparkContext.scala, about half of which are comments and warning logs. It's really not that much code.
| // In other modes, use the configured memory if it exists | ||
| master match { | ||
| case SparkMasterRegex.LOCAL_CLUSTER_REGEX(_, _, em) => | ||
| if (configuredMemory.isDefined) { |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Could you at least change this so that spark.executor.memory takes precedence if it's set? Then both use cases are possible. (Maybe someone is crazy enough to be trying dynamic allocation in local-cluster mode, or something else...)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
sure
|
Hi @andrewor14, is this still active? |
## What changes were proposed in this pull request? This PR proposes to close PRs ... - inactive to the review comments more than a month - WIP and inactive more than a month - with Jenkins build failure but inactive more than a month - suggested to be closed and no comment against that - obviously looking inappropriate (e.g., Branch 0.5) To make sure, I left a comment for each PR about a week ago and I could not have a response back from the author in these PRs below: Closes apache#11129 Closes apache#12085 Closes apache#12162 Closes apache#12419 Closes apache#12420 Closes apache#12491 Closes apache#13762 Closes apache#13837 Closes apache#13851 Closes apache#13881 Closes apache#13891 Closes apache#13959 Closes apache#14091 Closes apache#14481 Closes apache#14547 Closes apache#14557 Closes apache#14686 Closes apache#15594 Closes apache#15652 Closes apache#15850 Closes apache#15914 Closes apache#15918 Closes apache#16285 Closes apache#16389 Closes apache#16652 Closes apache#16743 Closes apache#16893 Closes apache#16975 Closes apache#17001 Closes apache#17088 Closes apache#17119 Closes apache#17272 Closes apache#17971 Added: Closes apache#17778 Closes apache#17303 Closes apache#17872 ## How was this patch tested? N/A Author: hyukjinkwon <[email protected]> Closes apache#18017 from HyukjinKwon/close-inactive-prs.
What changes were proposed in this pull request?
is supposed to launch 2 executors, each with 2GB of memory. However, when I ran this in master, I only get executors with 1GB memory. This patch fixes this problem.
How was this patch tested?
SparkSubmitSuite, manual tests.