Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
27 commits
Select commit Hold shift + click to select a range
85d22c3
Locality Sensitive Hashing (LSH) Python API.
yanboliang Nov 4, 2016
cdeca1c
Fix typos.
yanboliang Nov 4, 2016
66d308b
Merge branch 'spark-18080' of https://github.com/yanboliang/spark int…
Jan 25, 2017
d62a2d0
Merge branch 'master' of https://github.com/apache/spark into spark-1…
Jan 26, 2017
dafc4d1
Changes to fix LSH Python API
Jan 26, 2017
ac1f4f7
Merge branch 'spark-18080' of https://github.com/Yunni/spark into spa…
Yunni Jan 26, 2017
3a21f26
Fix examples and class definition
Yunni Jan 26, 2017
65dab3e
Add python examples and updated the user guide
Jan 26, 2017
3d3bcf0
Fix lint issues
Jan 26, 2017
69dccde
Fix python doc issues
Jan 26, 2017
e7542d0
Fix 'Definition list ends without a blank line'
Jan 26, 2017
5cfc9c5
Fix python unit tests
Jan 26, 2017
ccabbf4
Merge branch 'master' of https://github.com/apache/spark into spark-1…
Feb 7, 2017
2508a2f
Code Review Comments
Feb 8, 2017
2dd6aad
Merge branch 'master' of https://github.com/apache/spark into spark-1…
Feb 8, 2017
8e5468f
Add printing messages for the LSH Scala/Java/Python exmaples
Feb 8, 2017
6e85e1a
(1) Rename 'keys''values' to 'features''hashes' (2) Printing the ids …
Feb 8, 2017
4bc670c
Fix jenkins build
Feb 9, 2017
b45ec0a
Fix failed jenkins test
Feb 9, 2017
1b70b91
Fix Jenkins test
Feb 9, 2017
b1da01e
Code Review Comments for the LSH examples
Feb 10, 2017
8f1d708
Add alias for similarity join examples
Feb 10, 2017
49edc93
Merge branch 'master' of https://github.com/apache/spark into spark-1…
Feb 14, 2017
c64d50b
Code Review Comments
Feb 14, 2017
5d55752
Code Review Comments: Some minor fixes
Feb 14, 2017
d849c3a
Code Review Comment
Feb 15, 2017
36fd9bc
Merge branch 'master' of https://github.com/apache/spark into spark-1…
Feb 15, 2017
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions docs/ml-features.md
Original file line number Diff line number Diff line change
Expand Up @@ -1558,6 +1558,15 @@ for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaBucketedRandomProjectionLSHExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [BucketedRandomProjectionLSH Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.BucketedRandomProjectionLSH)
for more details on the API.

{% include_example python/ml/bucketed_random_projection_lsh_example.py %}
</div>

</div>

### MinHash for Jaccard Distance
Expand Down Expand Up @@ -1590,4 +1599,12 @@ for more details on the API.

{% include_example java/org/apache/spark/examples/ml/JavaMinHashLSHExample.java %}
</div>

<div data-lang="python" markdown="1">

Refer to the [MinHashLSH Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.MinHashLSH)
for more details on the API.

{% include_example python/ml/min_hash_lsh_example.py %}
</div>
</div>
Original file line number Diff line number Diff line change
Expand Up @@ -35,8 +35,15 @@
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

import static org.apache.spark.sql.functions.col;
// $example off$

/**
* An example demonstrating BucketedRandomProjectionLSH.
* Run with:
* bin/run-example org.apache.spark.examples.ml.JavaBucketedRandomProjectionLSHExample
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actually we can simplify it as bin/run-example ml.JavaBucketedRandomProjectionLSHExample, but it's ok to leave as it is.

*/
public class JavaBucketedRandomProjectionLSHExample {
public static void main(String[] args) {
SparkSession spark = SparkSession
Expand All @@ -61,7 +68,7 @@ public static void main(String[] args) {

StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("keys", new VectorUDT(), false, Metadata.empty())
new StructField("features", new VectorUDT(), false, Metadata.empty())
});
Dataset<Row> dfA = spark.createDataFrame(dataA, schema);
Dataset<Row> dfB = spark.createDataFrame(dataB, schema);
Expand All @@ -71,26 +78,31 @@ public static void main(String[] args) {
BucketedRandomProjectionLSH mh = new BucketedRandomProjectionLSH()
.setBucketLength(2.0)
.setNumHashTables(3)
.setInputCol("keys")
.setOutputCol("values");
.setInputCol("features")
.setOutputCol("hashes");

BucketedRandomProjectionLSHModel model = mh.fit(dfA);

// Feature Transformation
System.out.println("The hashed dataset where hashed values are stored in the column 'hashes':");
model.transform(dfA).show();
// Cache the transformed columns
Dataset<Row> transformedA = model.transform(dfA).cache();
Dataset<Row> transformedB = model.transform(dfB).cache();

// Approximate similarity join
model.approxSimilarityJoin(dfA, dfB, 1.5).show();
model.approxSimilarityJoin(transformedA, transformedB, 1.5).show();
// Self Join
model.approxSimilarityJoin(dfA, dfA, 2.5).filter("datasetA.id < datasetB.id").show();
// Compute the locality sensitive hashes for the input rows, then perform approximate
// similarity join.
// We could avoid computing hashes by passing in the already-transformed dataset, e.g.
// `model.approxSimilarityJoin(transformedA, transformedB, 1.5)`
System.out.println("Approximately joining dfA and dfB on distance smaller than 1.5:");
model.approxSimilarityJoin(dfA, dfB, 1.5, "EuclideanDistance")
.select(col("datasetA.id").alias("idA"),
col("datasetB.id").alias("idB"),
col("EuclideanDistance")).show();

// Approximate nearest neighbor search
// Compute the locality sensitive hashes for the input rows, then perform approximate nearest
// neighbor search.
// We could avoid computing hashes by passing in the already-transformed dataset, e.g.
// `model.approxNearestNeighbors(transformedA, key, 2)`
System.out.println("Approximately searching dfA for 2 nearest neighbors of the key:");
model.approxNearestNeighbors(dfA, key, 2).show();
model.approxNearestNeighbors(transformedA, key, 2).show();
// $example off$

spark.stop();
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@

import org.apache.spark.ml.feature.MinHashLSH;
import org.apache.spark.ml.feature.MinHashLSHModel;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.sql.Dataset;
Expand All @@ -34,8 +35,15 @@
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

import static org.apache.spark.sql.functions.col;
// $example off$

/**
* An example demonstrating MinHashLSH.
* Run with:
* bin/run-example org.apache.spark.examples.ml.JavaMinHashLSHExample
*/
public class JavaMinHashLSHExample {
public static void main(String[] args) {
SparkSession spark = SparkSession
Expand All @@ -44,25 +52,58 @@ public static void main(String[] args) {
.getOrCreate();

// $example on$
List<Row> data = Arrays.asList(
List<Row> dataA = Arrays.asList(
RowFactory.create(0, Vectors.sparse(6, new int[]{0, 1, 2}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(1, Vectors.sparse(6, new int[]{2, 3, 4}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(2, Vectors.sparse(6, new int[]{0, 2, 4}, new double[]{1.0, 1.0, 1.0}))
);

List<Row> dataB = Arrays.asList(
RowFactory.create(0, Vectors.sparse(6, new int[]{1, 3, 5}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(1, Vectors.sparse(6, new int[]{2, 3, 5}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(2, Vectors.sparse(6, new int[]{1, 2, 4}, new double[]{1.0, 1.0, 1.0}))
);

StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("keys", new VectorUDT(), false, Metadata.empty())
new StructField("features", new VectorUDT(), false, Metadata.empty())
});
Dataset<Row> dataFrame = spark.createDataFrame(data, schema);
Dataset<Row> dfA = spark.createDataFrame(dataA, schema);
Dataset<Row> dfB = spark.createDataFrame(dataB, schema);

int[] indices = {1, 3};
double[] values = {1.0, 1.0};
Vector key = Vectors.sparse(6, indices, values);

MinHashLSH mh = new MinHashLSH()
.setNumHashTables(1)
.setInputCol("keys")
.setOutputCol("values");
.setNumHashTables(5)
.setInputCol("features")
.setOutputCol("hashes");

MinHashLSHModel model = mh.fit(dfA);

// Feature Transformation
System.out.println("The hashed dataset where hashed values are stored in the column 'hashes':");
model.transform(dfA).show();

// Compute the locality sensitive hashes for the input rows, then perform approximate
// similarity join.
// We could avoid computing hashes by passing in the already-transformed dataset, e.g.
// `model.approxSimilarityJoin(transformedA, transformedB, 0.6)`
System.out.println("Approximately joining dfA and dfB on Jaccard distance smaller than 0.6:");
model.approxSimilarityJoin(dfA, dfB, 0.6, "JaccardDistance")
.select(col("datasetA.id").alias("idA"),
col("datasetB.id").alias("idB"),
col("JaccardDistance")).show();

MinHashLSHModel model = mh.fit(dataFrame);
model.transform(dataFrame).show();
// Compute the locality sensitive hashes for the input rows, then perform approximate nearest
// neighbor search.
// We could avoid computing hashes by passing in the already-transformed dataset, e.g.
// `model.approxNearestNeighbors(transformedA, key, 2)`
// It may return less than 2 rows when not enough approximate near-neighbor candidates are
// found.
System.out.println("Approximately searching dfA for 2 nearest neighbors of the key:");
model.approxNearestNeighbors(dfA, key, 2).show();
// $example off$

spark.stop();
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#


from __future__ import print_function

# $example on$
from pyspark.ml.feature import BucketedRandomProjectionLSH
from pyspark.ml.linalg import Vectors
from pyspark.sql.functions import col
# $example off$
from pyspark.sql import SparkSession

"""
An example demonstrating BucketedRandomProjectionLSH.
Run with:
bin/spark-submit examples/src/main/python/ml/bucketed_random_projection_lsh_example.py
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we add the appropriate note for this to the Scala and Java examples as well?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Added in 4 places.

"""

if __name__ == "__main__":
spark = SparkSession \
.builder \
.appName("BucketedRandomProjectionLSHExample") \
.getOrCreate()

# $example on$
dataA = [(0, Vectors.dense([1.0, 1.0]),),
(1, Vectors.dense([1.0, -1.0]),),
(2, Vectors.dense([-1.0, -1.0]),),
(3, Vectors.dense([-1.0, 1.0]),)]
dfA = spark.createDataFrame(dataA, ["id", "features"])

dataB = [(4, Vectors.dense([1.0, 0.0]),),
(5, Vectors.dense([-1.0, 0.0]),),
(6, Vectors.dense([0.0, 1.0]),),
(7, Vectors.dense([0.0, -1.0]),)]
dfB = spark.createDataFrame(dataB, ["id", "features"])

key = Vectors.dense([1.0, 0.0])

brp = BucketedRandomProjectionLSH(inputCol="features", outputCol="hashes", bucketLength=2.0,
numHashTables=3)
model = brp.fit(dfA)

# Feature Transformation
print("The hashed dataset where hashed values are stored in the column 'hashes':")
model.transform(dfA).show()

# Compute the locality sensitive hashes for the input rows, then perform approximate
# similarity join.
# We could avoid computing hashes by passing in the already-transformed dataset, e.g.
# `model.approxSimilarityJoin(transformedA, transformedB, 1.5)`
print("Approximately joining dfA and dfB on Euclidean distance smaller than 1.5:")
model.approxSimilarityJoin(dfA, dfB, 1.5, distCol="EuclideanDistance")\
.select(col("datasetA.id").alias("idA"),
col("datasetB.id").alias("idB"),
col("EuclideanDistance")).show()

# Compute the locality sensitive hashes for the input rows, then perform approximate nearest
# neighbor search.
# We could avoid computing hashes by passing in the already-transformed dataset, e.g.
# `model.approxNearestNeighbors(transformedA, key, 2)`
print("Approximately searching dfA for 2 nearest neighbors of the key:")
model.approxNearestNeighbors(dfA, key, 2).show()
# $example off$

spark.stop()
81 changes: 81 additions & 0 deletions examples/src/main/python/ml/min_hash_lsh_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#


from __future__ import print_function

# $example on$
from pyspark.ml.feature import MinHashLSH
from pyspark.ml.linalg import Vectors
from pyspark.sql.functions import col
# $example off$
from pyspark.sql import SparkSession

"""
An example demonstrating MinHashLSH.
Run with:
bin/spark-submit examples/src/main/python/ml/min_hash_lsh_example.py
"""

if __name__ == "__main__":
spark = SparkSession \
.builder \
.appName("MinHashLSHExample") \
.getOrCreate()

# $example on$
dataA = [(0, Vectors.sparse(6, [0, 1, 2], [1.0, 1.0, 1.0]),),
(1, Vectors.sparse(6, [2, 3, 4], [1.0, 1.0, 1.0]),),
(2, Vectors.sparse(6, [0, 2, 4], [1.0, 1.0, 1.0]),)]
dfA = spark.createDataFrame(dataA, ["id", "features"])

dataB = [(3, Vectors.sparse(6, [1, 3, 5], [1.0, 1.0, 1.0]),),
(4, Vectors.sparse(6, [2, 3, 5], [1.0, 1.0, 1.0]),),
(5, Vectors.sparse(6, [1, 2, 4], [1.0, 1.0, 1.0]),)]
dfB = spark.createDataFrame(dataB, ["id", "features"])

key = Vectors.sparse(6, [1, 3], [1.0, 1.0])

mh = MinHashLSH(inputCol="features", outputCol="hashes", numHashTables=5)
model = mh.fit(dfA)

# Feature Transformation
print("The hashed dataset where hashed values are stored in the column 'hashes':")
model.transform(dfA).show()

# Compute the locality sensitive hashes for the input rows, then perform approximate
# similarity join.
# We could avoid computing hashes by passing in the already-transformed dataset, e.g.
# `model.approxSimilarityJoin(transformedA, transformedB, 0.6)`
print("Approximately joining dfA and dfB on distance smaller than 0.6:")
model.approxSimilarityJoin(dfA, dfB, 0.6, distCol="JaccardDistance")\
.select(col("datasetA.id").alias("idA"),
col("datasetB.id").alias("idB"),
col("JaccardDistance")).show()

# Compute the locality sensitive hashes for the input rows, then perform approximate nearest
# neighbor search.
# We could avoid computing hashes by passing in the already-transformed dataset, e.g.
# `model.approxNearestNeighbors(transformedA, key, 2)`
# It may return less than 2 rows when not enough approximate near-neighbor candidates are
# found.
print("Approximately searching dfA for 2 nearest neighbors of the key:")
model.approxNearestNeighbors(dfA, key, 2).show()

# $example off$

spark.stop()
Loading