Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.ml;

// $example on$
import org.apache.spark.ml.feature.MinHash;
import org.apache.spark.ml.feature.MinHashModel;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

import java.util.Arrays;
import java.util.List;
// $example off$

public class JavaMinHashExample {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("JavaMinHashExample")
.getOrCreate();

// $example on$
List<Row> data = Arrays.asList(
RowFactory.create(Vectors.sparse(100, new int[]{1, 3, 4}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(Vectors.sparse(100, new int[]{1, 3, 4}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(Vectors.sparse(100, new int[]{3, 4, 6}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(Vectors.sparse(100, new int[]{2, 8}, new double[]{1.0, 1.0}))
);
StructType schema = new StructType(new StructField[]{
new StructField("signatures", new VectorUDT(), false, Metadata.empty()),
});
Dataset<Row> dataset = spark.createDataFrame(data, schema);

MinHash minHash = new MinHash()
.setInputCol("signatures")
.setOutputCol("buckets")
.setOutputDim(2);
MinHashModel model = minHash.fit(dataset);

// basic transformation with a new hash column
Dataset<Row> transformedDataset = model.transform(dataset);
transformedDataset.select("signatures", "buckets").show();

// approximate nearest neighbor search with a dataset and a key
Vector key = Vectors.sparse(100, new int[]{2, 3, 4}, new double[]{1.0, 1.0, 1.0});
Dataset approxNearestNeighbors = model.approxNearestNeighbors(dataset, key, 3, false, "distance");
approxNearestNeighbors.select("signatures", "distance").show();

// approximate similarity join of two datasets
List<Row> dataToJoin = Arrays.asList(RowFactory.create(key));
Dataset<Row> datasetToJoin = spark.createDataFrame(dataToJoin, schema);
Dataset approxSimilarityJoin = model.approxSimilarityJoin(dataset, datasetToJoin, 1);
approxSimilarityJoin.select("datasetA", "datasetB", "distCol").show();
// $example off$

spark.stop();
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.ml;

// $example on$
import org.apache.spark.ml.feature.RandomProjection;
import org.apache.spark.ml.feature.RandomProjectionModel;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

import java.util.Arrays;
import java.util.List;
// $example off$

public class JavaRandomProjectionExample {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("JavaRandomProjectionExample")
.getOrCreate();

// $example on$
List<Row> data = Arrays.asList(
RowFactory.create(Vectors.sparse(100, new int[]{1, 3, 4}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(Vectors.sparse(100, new int[]{1, 3, 4}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(Vectors.sparse(100, new int[]{3, 4, 6}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(Vectors.sparse(100, new int[]{2, 8}, new double[]{1.0, 1.0}))
);
StructType schema = new StructType(new StructField[]{
new StructField("signatures", new VectorUDT(), false, Metadata.empty()),
});
Dataset<Row> dataset = spark.createDataFrame(data, schema);

RandomProjection randomProjection = new RandomProjection()
.setInputCol("signatures")
.setOutputCol("results")
.setOutputDim(3)
.setBucketLength(2);
RandomProjectionModel model = randomProjection.fit(dataset);

// basic transformation with a new hash column
Dataset<Row> transformedDataset = model.transform(dataset);
transformedDataset.select("signatures", "results").show();

// approximate nearest neighbor search with a dataset and a key
Vector key = Vectors.sparse(100, new int[]{1, 3, 4}, new double[]{1.0, 1.0, 1.0});
Dataset approxNearestNeighbors = model.approxNearestNeighbors(dataset, key, 3, false, "distance");
approxNearestNeighbors.select("signatures", "distance").show();

// approximate similarity join of two datasets
List<Row> dataToJoin = Arrays.asList(RowFactory.create(key));
Dataset<Row> datasetToJoin = spark.createDataFrame(dataToJoin, schema);
Dataset approxSimilarityJoin = model.approxSimilarityJoin(dataset, datasetToJoin, 1);
approxSimilarityJoin.select("datasetA", "datasetB", "distCol").show();
// $example off$

spark.stop();
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.feature.MinHash
import org.apache.spark.ml.linalg.Vectors
// $example off$
import org.apache.spark.sql.SparkSession

object MinHashExample {
def main(args: Array[String]) {
val spark = SparkSession
.builder
.appName("MinHashExample")
.getOrCreate()

// $example on$
val dataset = spark.createDataFrame(Seq(
(1, Vectors.sparse(100, Array(1, 3, 4), Array(1.0, 1.0, 1.0))),
(2, Vectors.sparse(100, Array(1, 3, 4), Array(1.0, 1.0, 1.0))),
(3, Vectors.sparse(100, Array(3, 4, 6), Array(1.0, 1.0, 1.0))),
(4, Vectors.sparse(100, Array(2, 8), Array(1.0, 1.0)))
)).toDF("id", "signatures")

val minHash = new MinHash()
.setInputCol("signatures")
.setOutputCol("buckets")
.setOutputDim(2)
val model = minHash.fit(dataset)

// basic transformation with a new hash column
val transformedDataset = model.transform(dataset)
transformedDataset.select("id", "signatures", "buckets").show

// approximate nearest neighbor search with a dataset and a key
val key = Vectors.sparse(100, Array[Int](2, 3, 4), Array[Double](1.0, 1.0, 1.0))
val approxNearestNeighbors = model.approxNearestNeighbors(dataset, key, 3, false, "distance")
approxNearestNeighbors.select("id", "signatures", "distance").show

// approximate similarity join of two datasets
val datasetToJoin = spark.createDataFrame(Seq((5, key))).toDF("id", "signatures")
val approxSimilarityJoin = model.approxSimilarityJoin(dataset, datasetToJoin, 1)
approxSimilarityJoin.select("datasetA", "datasetB", "distCol").show
// $example off$

spark.stop()
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.feature.RandomProjection
import org.apache.spark.ml.linalg.Vectors
// $example off$
import org.apache.spark.sql.SparkSession

object RandomProjectionExample {
def main(args: Array[String]) {
val spark = SparkSession
.builder
.appName("RandomProjectionExample")
.getOrCreate()

// $example on$
val dataset = spark.createDataFrame(Seq(
(1, Vectors.sparse(100, Array(1, 3, 4), Array(1.0, 1.0, 1.0))),
(2, Vectors.sparse(100, Array(1, 3, 4), Array(1.0, 1.0, 1.0))),
(3, Vectors.sparse(100, Array(3, 4, 6), Array(1.0, 1.0, 1.0))),
(4, Vectors.sparse(100, Array(2, 8), Array(1.0, 1.0)))
)).toDF("id", "signatures")

val randomProjection = new RandomProjection()
.setInputCol("signatures")
.setOutputCol("results")
.setOutputDim(3)
.setBucketLength(2);
val model = randomProjection.fit(dataset)

// basic transformation with a new hash column
val transformedDataset = model.transform(dataset)
transformedDataset.select("id", "signatures", "results").show

// approximate nearest neighbor search with a dataset and a key
val key = Vectors.sparse(100, Array[Int](1, 3, 4), Array[Double](1.0, 1.0, 1.0))
val approxNearestNeighbors = model.approxNearestNeighbors(dataset, key, 3, false, "distance")
approxNearestNeighbors.select("id", "signatures", "distance").show

// approximate similarity join of two datasets
val datasetToJoin = spark.createDataFrame(Seq((5, key))).toDF("id", "signatures")
val approxSimilarityJoin = model.approxSimilarityJoin(dataset, datasetToJoin, 1)
approxSimilarityJoin.select("datasetA", "datasetB", "distCol").show
// $example off$

spark.stop()
}
}