Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
133 changes: 122 additions & 11 deletions docs/streaming-kafka-0-10-integration.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,9 @@ The Spark Streaming integration for Kafka 0.10 is similar in design to the 0.8 [
### Linking
For Scala/Java applications using SBT/Maven project definitions, link your streaming application with the following artifact (see [Linking section](streaming-programming-guide.html#linking) in the main programming guide for further information).

groupId = org.apache.spark
artifactId = spark-streaming-kafka-0-10_{{site.SCALA_BINARY_VERSION}}
version = {{site.SPARK_VERSION_SHORT}}
groupId = org.apache.spark
artifactId = spark-streaming-kafka-0-10_{{site.SCALA_BINARY_VERSION}}
version = {{site.SPARK_VERSION_SHORT}}

### Creating a Direct Stream
Note that the namespace for the import includes the version, org.apache.spark.streaming.kafka010
Expand Down Expand Up @@ -44,6 +44,42 @@ For Scala/Java applications using SBT/Maven project definitions, link your strea
Each item in the stream is a [ConsumerRecord](http://kafka.apache.org/0100/javadoc/org/apache/kafka/clients/consumer/ConsumerRecord.html)
</div>
<div data-lang="java" markdown="1">
import java.util.*;
import org.apache.spark.SparkConf;
import org.apache.spark.TaskContext;
import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.*;
import org.apache.spark.streaming.api.java.*;
import org.apache.spark.streaming.kafka010.*;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;
import scala.Tuple2;

Map<String, Object> kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", "localhost:9092,anotherhost:9092");
kafkaParams.put("key.deserializer", StringDeserializer.class);
kafkaParams.put("value.deserializer", StringDeserializer.class);
kafkaParams.put("group.id", "use_a_separate_group_id_for_each_stream");
kafkaParams.put("auto.offset.reset", "latest");
kafkaParams.put("enable.auto.commit", false);

Collection<String> topics = Arrays.asList("topicA", "topicB");

final JavaInputDStream<ConsumerRecord<String, String>> stream =
KafkaUtils.createDirectStream(
streamingContext,
LocationStrategies.PreferConsistent(),
ConsumerStrategies.<String, String>Subscribe(topics, kafkaParams)
);

stream.mapToPair(
new PairFunction<ConsumerRecord<String, String>, String, String>() {
@Override
public Tuple2<String, String> call(ConsumerRecord<String, String> record) {
return new Tuple2<>(record.key(), record.value());
}
})
</div>
</div>

Expand Down Expand Up @@ -85,6 +121,20 @@ If you have a use case that is better suited to batch processing, you can create

</div>
<div data-lang="java" markdown="1">
// Import dependencies and create kafka params as in Create Direct Stream above

OffsetRange[] offsetRanges = {
// topic, partition, inclusive starting offset, exclusive ending offset
OffsetRange.create("test", 0, 0, 100),
OffsetRange.create("test", 1, 0, 100)
};

JavaRDD<ConsumerRecord<String, String>> rdd = KafkaUtils.createRDD(
sparkContext,
kafkaParams,
offsetRanges,
LocationStrategies.PreferConsistent()
);
</div>
</div>

Expand All @@ -103,6 +153,20 @@ Note that you cannot use `PreferBrokers`, because without the stream there is no
}
</div>
<div data-lang="java" markdown="1">
stream.foreachRDD(new VoidFunction<JavaRDD<ConsumerRecord<String, String>>>() {
@Override
public void call(JavaRDD<ConsumerRecord<String, String>> rdd) {
final OffsetRange[] offsetRanges = ((HasOffsetRanges) rdd.rdd()).offsetRanges();
rdd.foreachPartition(new VoidFunction<Iterator<ConsumerRecord<String, String>>>() {
@Override
public void call(Iterator<ConsumerRecord<String, String>> consumerRecords) {
OffsetRange o = offsetRanges[TaskContext.get().partitionId()];
System.out.println(
o.topic() + " " + o.partition() + " " + o.fromOffset() + " " + o.untilOffset());
}
});
}
});
</div>
</div>

Expand All @@ -120,15 +184,24 @@ Kafka has an offset commit API that stores offsets in a special Kafka topic. By
<div class="codetabs">
<div data-lang="scala" markdown="1">
stream.foreachRDD { rdd =>
val offsets = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges

// some time later, after outputs have completed
stream.asInstanceOf[CanCommitOffsets].commitAsync(offsets)
stream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
}

As with HasOffsetRanges, the cast to CanCommitOffsets will only succeed if called on the result of createDirectStream, not after transformations. The commitAsync call is threadsafe, but must occur after outputs if you want meaningful semantics.
</div>
<div data-lang="java" markdown="1">
stream.foreachRDD(new VoidFunction<JavaRDD<ConsumerRecord<String, String>>>() {
@Override
public void call(JavaRDD<ConsumerRecord<String, String>> rdd) {
OffsetRange[] offsetRanges = ((HasOffsetRanges) rdd.rdd()).offsetRanges();

// some time later, after outputs have completed
((CanCommitOffsets) stream.inputDStream()).commitAsync(offsetRanges);
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

i personally feel it'd be strange while we can stream.asInstanceOf[CanCommitOffsets].commitAsync(...) in scala, we must ((CanCommitOffsets) stream**.inputDStream()**).commitAsync(...) in java? I can open a pr to fix this when needed. @koeninger @zsxwing options please?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think it's far too late to fix those issues at this point. DStreams return an RDD, not a parameterized type. KafkaUtils methods return DStreams and RDDs, not an implementation specific type.

Copy link
Contributor Author

@lw-lin lw-lin Oct 29, 2016

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

thanks Cody. sorry for not being clear, but my point was that the Java kafka input stream does not implements CanCommitOffsets, thus it has to delegate commitAsync(...) explicitly to stream.inputDStream(), which is a scala input stream which implements CanCommitOffsets.

should createDirectStream() return a java kafka inputdstream that also implements CanCommitOffsets? so people can write:

((CanCommitOffsets) stream).commitAsync(offsetRanges);

rather than

((CanCommitOffsets) stream.inputDStream()).commitAsync(offsetRanges);

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I understood your point. My point is that you have to do the same kind of delegation to get access to HasOffsetRanges on a java rdd, and you're unlikely to be able to fix that kind of thing at this point without either changing the interfaces for dstream, or exposing implementation classes, which Spark is historically very much against.

}
});
</div>
</div>

Expand All @@ -141,7 +214,7 @@ For data stores that support transactions, saving offsets in the same transactio

// begin from the the offsets committed to the database
val fromOffsets = selectOffsetsFromYourDatabase.map { resultSet =>
new TopicPartition(resultSet.string("topic")), resultSet.int("partition")) -> resultSet.long("offset")
new TopicPartition(resultSet.string("topic"), resultSet.int("partition")) -> resultSet.long("offset")
}.toMap

val stream = KafkaUtils.createDirectStream[String, String](
Expand All @@ -155,16 +228,46 @@ For data stores that support transactions, saving offsets in the same transactio

val results = yourCalculation(rdd)

yourTransactionBlock {
// update results
// begin your transaction

// update offsets where the end of existing offsets matches the beginning of this batch of offsets
// update results
// update offsets where the end of existing offsets matches the beginning of this batch of offsets
// assert that offsets were updated correctly

// assert that offsets were updated correctly
}
// end your transaction
}
</div>
<div data-lang="java" markdown="1">
// The details depend on your data store, but the general idea looks like this

// begin from the the offsets committed to the database
Map<TopicPartition, Long> fromOffsets = new HashMap<>();
for (resultSet : selectOffsetsFromYourDatabase)
fromOffsets.put(new TopicPartition(resultSet.string("topic"), resultSet.int("partition")), resultSet.long("offset"));
}

JavaInputDStream<ConsumerRecord<String, String>> stream = KafkaUtils.createDirectStream(
streamingContext,
LocationStrategies.PreferConsistent(),
ConsumerStrategies.<String, String>Assign(fromOffsets.keySet(), kafkaParams, fromOffsets)
);

stream.foreachRDD(new VoidFunction<JavaRDD<ConsumerRecord<String, String>>>() {
@Override
public void call(JavaRDD<ConsumerRecord<String, String>> rdd) {
OffsetRange[] offsetRanges = ((HasOffsetRanges) rdd.rdd()).offsetRanges();

Object results = yourCalculation(rdd);

// begin your transaction

// update results
// update offsets where the end of existing offsets matches the beginning of this batch of offsets
// assert that offsets were updated correctly

// end your transaction
}
});
</div>
</div>

Expand All @@ -185,6 +288,14 @@ The new Kafka consumer [supports SSL](http://kafka.apache.org/documentation.html
)
</div>
<div data-lang="java" markdown="1">
Map<String, Object> kafkaParams = new HashMap<String, Object>();
// the usual params, make sure to change the port in bootstrap.servers if 9092 is not TLS
kafkaParams.put("security.protocol", "SSL");
kafkaParams.put("ssl.truststore.location", "/some-directory/kafka.client.truststore.jks");
kafkaParams.put("ssl.truststore.password", "test1234");
kafkaParams.put("ssl.keystore.location", "/some-directory/kafka.client.keystore.jks");
kafkaParams.put("ssl.keystore.password", "test1234");
kafkaParams.put("ssl.key.password", "test1234");
</div>
</div>

Expand Down