-
Notifications
You must be signed in to change notification settings - Fork 28.9k
[SPARK-15962][SQL] Introduce implementation with a dense format for UnsafeArrayData #13680
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
|
Test build #60556 has finished for PR 13680 at commit
|
|
Test build #60566 has finished for PR 13680 at commit
|
|
Test build #60568 has finished for PR 13680 at commit
|
|
Thanks for working on it! One of my concern is: do we really need 2 unsafe array implementations? For the |
|
@cloud-fan thank you for your good comment. I also read previous proposal. IMHO, a new unified format should have three properties.
Based on them, how about this single format? If we want to reduce memory footprint in the case of primitive array, we can drop |
|
null bits won't take a lot of memory(1 bit per element), and having the |
|
It is OK to always keep One question: Is this format to keep fixed space for If an answer of the above question is yes, I agree with no cc @hvanhovell |
|
Test build #61095 has finished for PR 13680 at commit
|
|
@kiszk yea, even the null bits is true, the element still take space at |
|
Good to hear. I will make an implementation for single format. If I would meet some issues, I will raise them here. |
|
Thanks! Feel free to ask any questions! |
|
@cloud-fan , I have one question about null field. Should we put zero into the corresponding field to position where If we avoid to put zero, this avoidance affects two properties.
In my current implementation, a width of each element depends on element type (4: Int, 8: Double, etc). Thus, it is hard to do the same approach as it did. Since What do you think? Should we have to keep the above two property by clearing a field? |
|
One potential performance issue is that we have to always clear all of null bits at If we have a flag to show whether there is an area of What do you think? |
|
@kiszk we should definitely put zero into the corresponding field when set null. It will be a little harder than about clear out all null bits, yea, it's a big overhead for array with small element like boolean array, but I'm not sure this worth 2 different implementations, cc @rxin |
|
@cloud-fan , for the first issue, we are on the same page. Your proposal is what I am thinking about as possible solutions. I will do that. For the second issue, it seems to be design choice between
|
|
having 2 implementations is also kind of a branch: the virtual function call need to be dispatched between these 2 implementations, while the only one implementation can be marked as final and doesn't have this overhead. |
|
I see. I assumed that virtual call will be devirtualized by declaring |
|
I don't have a strong preference here, each choice has its advantage and weakness:
cc @davies |
|
I am kind in favor of the single implementation for a couple of reasons:
It would help to have a number of performance benchmarks. |
|
We should do this more holistically, i.e. thinking about what we want to do with primitive arrays for machine learning and how to handle everything end to end. Let's not rush an implementation change just for the low level data structure. |
|
Test build #61218 has finished for PR 13680 at commit
|
|
Test build #61222 has finished for PR 13680 at commit
|
|
Test build #61233 has finished for PR 13680 at commit
|
|
Test build #61235 has finished for PR 13680 at commit
|
|
Test build #61236 has finished for PR 13680 at commit
|
|
Test build #61239 has finished for PR 13680 at commit
|
|
@cloud-fan and @hvanhovell thank you for your comments. Based on your comments, I implemented |
some refinements
|
Jenkins, retest this please |
|
Test build #65920 has finished for PR 13680 at commit
|
|
Test build #65930 has finished for PR 13680 at commit
|
|
@cloud-fan could you please review this again? |
|
thanks for your great work! merging to master! |
## What changes were proposed in this pull request? Waiting for merging #13680 This PR optimizes `SerializeFromObject()` for an primitive array. This is derived from #13758 to address one of problems by using a simple way in #13758. The current implementation always generates `GenericArrayData` from `SerializeFromObject()` for any type of an array in a logical plan. This involves a boxing at a constructor of `GenericArrayData` when `SerializedFromObject()` has an primitive array. This PR enables to generate `UnsafeArrayData` from `SerializeFromObject()` for a primitive array. It can avoid boxing to create an instance of `ArrayData` in the generated code by Catalyst. This PR also generate `UnsafeArrayData` in a case for `RowEncoder.serializeFor` or `CatalystTypeConverters.createToCatalystConverter`. Performance improvement of `SerializeFromObject()` is up to 2.0x ``` OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.4.11-200.fc22.x86_64 Intel Xeon E3-12xx v2 (Ivy Bridge) Without this PR Write an array in Dataset: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 556 / 608 15.1 66.3 1.0X Double 1668 / 1746 5.0 198.8 0.3X with this PR Write an array in Dataset: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 352 / 401 23.8 42.0 1.0X Double 821 / 885 10.2 97.9 0.4X ``` Here is an example program that will happen in mllib as described in [SPARK-16070](https://issues.apache.org/jira/browse/SPARK-16070). ``` sparkContext.parallelize(Seq(Array(1, 2)), 1).toDS.map(e => e).show ``` Generated code before applying this PR ``` java /* 039 */ protected void processNext() throws java.io.IOException { /* 040 */ while (inputadapter_input.hasNext()) { /* 041 */ InternalRow inputadapter_row = (InternalRow) inputadapter_input.next(); /* 042 */ int[] inputadapter_value = (int[])inputadapter_row.get(0, null); /* 043 */ /* 044 */ Object mapelements_obj = ((Expression) references[0]).eval(null); /* 045 */ scala.Function1 mapelements_value1 = (scala.Function1) mapelements_obj; /* 046 */ /* 047 */ boolean mapelements_isNull = false || false; /* 048 */ int[] mapelements_value = null; /* 049 */ if (!mapelements_isNull) { /* 050 */ Object mapelements_funcResult = null; /* 051 */ mapelements_funcResult = mapelements_value1.apply(inputadapter_value); /* 052 */ if (mapelements_funcResult == null) { /* 053 */ mapelements_isNull = true; /* 054 */ } else { /* 055 */ mapelements_value = (int[]) mapelements_funcResult; /* 056 */ } /* 057 */ /* 058 */ } /* 059 */ mapelements_isNull = mapelements_value == null; /* 060 */ /* 061 */ serializefromobject_argIsNulls[0] = mapelements_isNull; /* 062 */ serializefromobject_argValue = mapelements_value; /* 063 */ /* 064 */ boolean serializefromobject_isNull = false; /* 065 */ for (int idx = 0; idx < 1; idx++) { /* 066 */ if (serializefromobject_argIsNulls[idx]) { serializefromobject_isNull = true; break; } /* 067 */ } /* 068 */ /* 069 */ final ArrayData serializefromobject_value = serializefromobject_isNull ? null : new org.apache.spark.sql.catalyst.util.GenericArrayData(serializefromobject_argValue); /* 070 */ serializefromobject_holder.reset(); /* 071 */ /* 072 */ serializefromobject_rowWriter.zeroOutNullBytes(); /* 073 */ /* 074 */ if (serializefromobject_isNull) { /* 075 */ serializefromobject_rowWriter.setNullAt(0); /* 076 */ } else { /* 077 */ // Remember the current cursor so that we can calculate how many bytes are /* 078 */ // written later. /* 079 */ final int serializefromobject_tmpCursor = serializefromobject_holder.cursor; /* 080 */ /* 081 */ if (serializefromobject_value instanceof UnsafeArrayData) { /* 082 */ final int serializefromobject_sizeInBytes = ((UnsafeArrayData) serializefromobject_value).getSizeInBytes(); /* 083 */ // grow the global buffer before writing data. /* 084 */ serializefromobject_holder.grow(serializefromobject_sizeInBytes); /* 085 */ ((UnsafeArrayData) serializefromobject_value).writeToMemory(serializefromobject_holder.buffer, serializefromobject_holder.cursor); /* 086 */ serializefromobject_holder.cursor += serializefromobject_sizeInBytes; /* 087 */ /* 088 */ } else { /* 089 */ final int serializefromobject_numElements = serializefromobject_value.numElements(); /* 090 */ serializefromobject_arrayWriter.initialize(serializefromobject_holder, serializefromobject_numElements, 4); /* 091 */ /* 092 */ for (int serializefromobject_index = 0; serializefromobject_index < serializefromobject_numElements; serializefromobject_index++) { /* 093 */ if (serializefromobject_value.isNullAt(serializefromobject_index)) { /* 094 */ serializefromobject_arrayWriter.setNullInt(serializefromobject_index); /* 095 */ } else { /* 096 */ final int serializefromobject_element = serializefromobject_value.getInt(serializefromobject_index); /* 097 */ serializefromobject_arrayWriter.write(serializefromobject_index, serializefromobject_element); /* 098 */ } /* 099 */ } /* 100 */ } /* 101 */ /* 102 */ serializefromobject_rowWriter.setOffsetAndSize(0, serializefromobject_tmpCursor, serializefromobject_holder.cursor - serializefromobject_tmpCursor); /* 103 */ } /* 104 */ serializefromobject_result.setTotalSize(serializefromobject_holder.totalSize()); /* 105 */ append(serializefromobject_result); /* 106 */ if (shouldStop()) return; /* 107 */ } /* 108 */ } /* 109 */ } ``` Generated code after applying this PR ``` java /* 035 */ protected void processNext() throws java.io.IOException { /* 036 */ while (inputadapter_input.hasNext()) { /* 037 */ InternalRow inputadapter_row = (InternalRow) inputadapter_input.next(); /* 038 */ int[] inputadapter_value = (int[])inputadapter_row.get(0, null); /* 039 */ /* 040 */ Object mapelements_obj = ((Expression) references[0]).eval(null); /* 041 */ scala.Function1 mapelements_value1 = (scala.Function1) mapelements_obj; /* 042 */ /* 043 */ boolean mapelements_isNull = false || false; /* 044 */ int[] mapelements_value = null; /* 045 */ if (!mapelements_isNull) { /* 046 */ Object mapelements_funcResult = null; /* 047 */ mapelements_funcResult = mapelements_value1.apply(inputadapter_value); /* 048 */ if (mapelements_funcResult == null) { /* 049 */ mapelements_isNull = true; /* 050 */ } else { /* 051 */ mapelements_value = (int[]) mapelements_funcResult; /* 052 */ } /* 053 */ /* 054 */ } /* 055 */ mapelements_isNull = mapelements_value == null; /* 056 */ /* 057 */ boolean serializefromobject_isNull = mapelements_isNull; /* 058 */ final ArrayData serializefromobject_value = serializefromobject_isNull ? null : org.apache.spark.sql.catalyst.expressions.UnsafeArrayData.fromPrimitiveArray(mapelements_value); /* 059 */ serializefromobject_isNull = serializefromobject_value == null; /* 060 */ serializefromobject_holder.reset(); /* 061 */ /* 062 */ serializefromobject_rowWriter.zeroOutNullBytes(); /* 063 */ /* 064 */ if (serializefromobject_isNull) { /* 065 */ serializefromobject_rowWriter.setNullAt(0); /* 066 */ } else { /* 067 */ // Remember the current cursor so that we can calculate how many bytes are /* 068 */ // written later. /* 069 */ final int serializefromobject_tmpCursor = serializefromobject_holder.cursor; /* 070 */ /* 071 */ if (serializefromobject_value instanceof UnsafeArrayData) { /* 072 */ final int serializefromobject_sizeInBytes = ((UnsafeArrayData) serializefromobject_value).getSizeInBytes(); /* 073 */ // grow the global buffer before writing data. /* 074 */ serializefromobject_holder.grow(serializefromobject_sizeInBytes); /* 075 */ ((UnsafeArrayData) serializefromobject_value).writeToMemory(serializefromobject_holder.buffer, serializefromobject_holder.cursor); /* 076 */ serializefromobject_holder.cursor += serializefromobject_sizeInBytes; /* 077 */ /* 078 */ } else { /* 079 */ final int serializefromobject_numElements = serializefromobject_value.numElements(); /* 080 */ serializefromobject_arrayWriter.initialize(serializefromobject_holder, serializefromobject_numElements, 4); /* 081 */ /* 082 */ for (int serializefromobject_index = 0; serializefromobject_index < serializefromobject_numElements; serializefromobject_index++) { /* 083 */ if (serializefromobject_value.isNullAt(serializefromobject_index)) { /* 084 */ serializefromobject_arrayWriter.setNullInt(serializefromobject_index); /* 085 */ } else { /* 086 */ final int serializefromobject_element = serializefromobject_value.getInt(serializefromobject_index); /* 087 */ serializefromobject_arrayWriter.write(serializefromobject_index, serializefromobject_element); /* 088 */ } /* 089 */ } /* 090 */ } /* 091 */ /* 092 */ serializefromobject_rowWriter.setOffsetAndSize(0, serializefromobject_tmpCursor, serializefromobject_holder.cursor - serializefromobject_tmpCursor); /* 093 */ } /* 094 */ serializefromobject_result.setTotalSize(serializefromobject_holder.totalSize()); /* 095 */ append(serializefromobject_result); /* 096 */ if (shouldStop()) return; /* 097 */ } /* 098 */ } /* 099 */ } ``` ## How was this patch tested? Added a test in `DatasetSuite`, `RowEncoderSuite`, and `CatalystTypeConvertersSuite` Author: Kazuaki Ishizaki <[email protected]> Closes #15044 from kiszk/SPARK-17490.
Waiting for merging #13680 This PR optimizes `SerializeFromObject()` for an primitive array. This is derived from #13758 to address one of problems by using a simple way in #13758. The current implementation always generates `GenericArrayData` from `SerializeFromObject()` for any type of an array in a logical plan. This involves a boxing at a constructor of `GenericArrayData` when `SerializedFromObject()` has an primitive array. This PR enables to generate `UnsafeArrayData` from `SerializeFromObject()` for a primitive array. It can avoid boxing to create an instance of `ArrayData` in the generated code by Catalyst. This PR also generate `UnsafeArrayData` in a case for `RowEncoder.serializeFor` or `CatalystTypeConverters.createToCatalystConverter`. Performance improvement of `SerializeFromObject()` is up to 2.0x ``` OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.4.11-200.fc22.x86_64 Intel Xeon E3-12xx v2 (Ivy Bridge) Without this PR Write an array in Dataset: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 556 / 608 15.1 66.3 1.0X Double 1668 / 1746 5.0 198.8 0.3X with this PR Write an array in Dataset: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 352 / 401 23.8 42.0 1.0X Double 821 / 885 10.2 97.9 0.4X ``` Here is an example program that will happen in mllib as described in [SPARK-16070](https://issues.apache.org/jira/browse/SPARK-16070). ``` sparkContext.parallelize(Seq(Array(1, 2)), 1).toDS.map(e => e).show ``` Generated code before applying this PR ``` java /* 039 */ protected void processNext() throws java.io.IOException { /* 040 */ while (inputadapter_input.hasNext()) { /* 041 */ InternalRow inputadapter_row = (InternalRow) inputadapter_input.next(); /* 042 */ int[] inputadapter_value = (int[])inputadapter_row.get(0, null); /* 043 */ /* 044 */ Object mapelements_obj = ((Expression) references[0]).eval(null); /* 045 */ scala.Function1 mapelements_value1 = (scala.Function1) mapelements_obj; /* 046 */ /* 047 */ boolean mapelements_isNull = false || false; /* 048 */ int[] mapelements_value = null; /* 049 */ if (!mapelements_isNull) { /* 050 */ Object mapelements_funcResult = null; /* 051 */ mapelements_funcResult = mapelements_value1.apply(inputadapter_value); /* 052 */ if (mapelements_funcResult == null) { /* 053 */ mapelements_isNull = true; /* 054 */ } else { /* 055 */ mapelements_value = (int[]) mapelements_funcResult; /* 056 */ } /* 057 */ /* 058 */ } /* 059 */ mapelements_isNull = mapelements_value == null; /* 060 */ /* 061 */ serializefromobject_argIsNulls[0] = mapelements_isNull; /* 062 */ serializefromobject_argValue = mapelements_value; /* 063 */ /* 064 */ boolean serializefromobject_isNull = false; /* 065 */ for (int idx = 0; idx < 1; idx++) { /* 066 */ if (serializefromobject_argIsNulls[idx]) { serializefromobject_isNull = true; break; } /* 067 */ } /* 068 */ /* 069 */ final ArrayData serializefromobject_value = serializefromobject_isNull ? null : new org.apache.spark.sql.catalyst.util.GenericArrayData(serializefromobject_argValue); /* 070 */ serializefromobject_holder.reset(); /* 071 */ /* 072 */ serializefromobject_rowWriter.zeroOutNullBytes(); /* 073 */ /* 074 */ if (serializefromobject_isNull) { /* 075 */ serializefromobject_rowWriter.setNullAt(0); /* 076 */ } else { /* 077 */ // Remember the current cursor so that we can calculate how many bytes are /* 078 */ // written later. /* 079 */ final int serializefromobject_tmpCursor = serializefromobject_holder.cursor; /* 080 */ /* 081 */ if (serializefromobject_value instanceof UnsafeArrayData) { /* 082 */ final int serializefromobject_sizeInBytes = ((UnsafeArrayData) serializefromobject_value).getSizeInBytes(); /* 083 */ // grow the global buffer before writing data. /* 084 */ serializefromobject_holder.grow(serializefromobject_sizeInBytes); /* 085 */ ((UnsafeArrayData) serializefromobject_value).writeToMemory(serializefromobject_holder.buffer, serializefromobject_holder.cursor); /* 086 */ serializefromobject_holder.cursor += serializefromobject_sizeInBytes; /* 087 */ /* 088 */ } else { /* 089 */ final int serializefromobject_numElements = serializefromobject_value.numElements(); /* 090 */ serializefromobject_arrayWriter.initialize(serializefromobject_holder, serializefromobject_numElements, 4); /* 091 */ /* 092 */ for (int serializefromobject_index = 0; serializefromobject_index < serializefromobject_numElements; serializefromobject_index++) { /* 093 */ if (serializefromobject_value.isNullAt(serializefromobject_index)) { /* 094 */ serializefromobject_arrayWriter.setNullInt(serializefromobject_index); /* 095 */ } else { /* 096 */ final int serializefromobject_element = serializefromobject_value.getInt(serializefromobject_index); /* 097 */ serializefromobject_arrayWriter.write(serializefromobject_index, serializefromobject_element); /* 098 */ } /* 099 */ } /* 100 */ } /* 101 */ /* 102 */ serializefromobject_rowWriter.setOffsetAndSize(0, serializefromobject_tmpCursor, serializefromobject_holder.cursor - serializefromobject_tmpCursor); /* 103 */ } /* 104 */ serializefromobject_result.setTotalSize(serializefromobject_holder.totalSize()); /* 105 */ append(serializefromobject_result); /* 106 */ if (shouldStop()) return; /* 107 */ } /* 108 */ } /* 109 */ } ``` Generated code after applying this PR ``` java /* 035 */ protected void processNext() throws java.io.IOException { /* 036 */ while (inputadapter_input.hasNext()) { /* 037 */ InternalRow inputadapter_row = (InternalRow) inputadapter_input.next(); /* 038 */ int[] inputadapter_value = (int[])inputadapter_row.get(0, null); /* 039 */ /* 040 */ Object mapelements_obj = ((Expression) references[0]).eval(null); /* 041 */ scala.Function1 mapelements_value1 = (scala.Function1) mapelements_obj; /* 042 */ /* 043 */ boolean mapelements_isNull = false || false; /* 044 */ int[] mapelements_value = null; /* 045 */ if (!mapelements_isNull) { /* 046 */ Object mapelements_funcResult = null; /* 047 */ mapelements_funcResult = mapelements_value1.apply(inputadapter_value); /* 048 */ if (mapelements_funcResult == null) { /* 049 */ mapelements_isNull = true; /* 050 */ } else { /* 051 */ mapelements_value = (int[]) mapelements_funcResult; /* 052 */ } /* 053 */ /* 054 */ } /* 055 */ mapelements_isNull = mapelements_value == null; /* 056 */ /* 057 */ boolean serializefromobject_isNull = mapelements_isNull; /* 058 */ final ArrayData serializefromobject_value = serializefromobject_isNull ? null : org.apache.spark.sql.catalyst.expressions.UnsafeArrayData.fromPrimitiveArray(mapelements_value); /* 059 */ serializefromobject_isNull = serializefromobject_value == null; /* 060 */ serializefromobject_holder.reset(); /* 061 */ /* 062 */ serializefromobject_rowWriter.zeroOutNullBytes(); /* 063 */ /* 064 */ if (serializefromobject_isNull) { /* 065 */ serializefromobject_rowWriter.setNullAt(0); /* 066 */ } else { /* 067 */ // Remember the current cursor so that we can calculate how many bytes are /* 068 */ // written later. /* 069 */ final int serializefromobject_tmpCursor = serializefromobject_holder.cursor; /* 070 */ /* 071 */ if (serializefromobject_value instanceof UnsafeArrayData) { /* 072 */ final int serializefromobject_sizeInBytes = ((UnsafeArrayData) serializefromobject_value).getSizeInBytes(); /* 073 */ // grow the global buffer before writing data. /* 074 */ serializefromobject_holder.grow(serializefromobject_sizeInBytes); /* 075 */ ((UnsafeArrayData) serializefromobject_value).writeToMemory(serializefromobject_holder.buffer, serializefromobject_holder.cursor); /* 076 */ serializefromobject_holder.cursor += serializefromobject_sizeInBytes; /* 077 */ /* 078 */ } else { /* 079 */ final int serializefromobject_numElements = serializefromobject_value.numElements(); /* 080 */ serializefromobject_arrayWriter.initialize(serializefromobject_holder, serializefromobject_numElements, 4); /* 081 */ /* 082 */ for (int serializefromobject_index = 0; serializefromobject_index < serializefromobject_numElements; serializefromobject_index++) { /* 083 */ if (serializefromobject_value.isNullAt(serializefromobject_index)) { /* 084 */ serializefromobject_arrayWriter.setNullInt(serializefromobject_index); /* 085 */ } else { /* 086 */ final int serializefromobject_element = serializefromobject_value.getInt(serializefromobject_index); /* 087 */ serializefromobject_arrayWriter.write(serializefromobject_index, serializefromobject_element); /* 088 */ } /* 089 */ } /* 090 */ } /* 091 */ /* 092 */ serializefromobject_rowWriter.setOffsetAndSize(0, serializefromobject_tmpCursor, serializefromobject_holder.cursor - serializefromobject_tmpCursor); /* 093 */ } /* 094 */ serializefromobject_result.setTotalSize(serializefromobject_holder.totalSize()); /* 095 */ append(serializefromobject_result); /* 096 */ if (shouldStop()) return; /* 097 */ } /* 098 */ } /* 099 */ } ``` Added a test in `DatasetSuite`, `RowEncoderSuite`, and `CatalystTypeConvertersSuite` Author: Kazuaki Ishizaki <[email protected]> Closes #15044 from kiszk/SPARK-17490. (cherry picked from commit 19cf208) Signed-off-by: Herman van Hovell <[email protected]>
## What changes were proposed in this pull request? Waiting for merging apache#13680 This PR optimizes `SerializeFromObject()` for an primitive array. This is derived from apache#13758 to address one of problems by using a simple way in apache#13758. The current implementation always generates `GenericArrayData` from `SerializeFromObject()` for any type of an array in a logical plan. This involves a boxing at a constructor of `GenericArrayData` when `SerializedFromObject()` has an primitive array. This PR enables to generate `UnsafeArrayData` from `SerializeFromObject()` for a primitive array. It can avoid boxing to create an instance of `ArrayData` in the generated code by Catalyst. This PR also generate `UnsafeArrayData` in a case for `RowEncoder.serializeFor` or `CatalystTypeConverters.createToCatalystConverter`. Performance improvement of `SerializeFromObject()` is up to 2.0x ``` OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.4.11-200.fc22.x86_64 Intel Xeon E3-12xx v2 (Ivy Bridge) Without this PR Write an array in Dataset: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 556 / 608 15.1 66.3 1.0X Double 1668 / 1746 5.0 198.8 0.3X with this PR Write an array in Dataset: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 352 / 401 23.8 42.0 1.0X Double 821 / 885 10.2 97.9 0.4X ``` Here is an example program that will happen in mllib as described in [SPARK-16070](https://issues.apache.org/jira/browse/SPARK-16070). ``` sparkContext.parallelize(Seq(Array(1, 2)), 1).toDS.map(e => e).show ``` Generated code before applying this PR ``` java /* 039 */ protected void processNext() throws java.io.IOException { /* 040 */ while (inputadapter_input.hasNext()) { /* 041 */ InternalRow inputadapter_row = (InternalRow) inputadapter_input.next(); /* 042 */ int[] inputadapter_value = (int[])inputadapter_row.get(0, null); /* 043 */ /* 044 */ Object mapelements_obj = ((Expression) references[0]).eval(null); /* 045 */ scala.Function1 mapelements_value1 = (scala.Function1) mapelements_obj; /* 046 */ /* 047 */ boolean mapelements_isNull = false || false; /* 048 */ int[] mapelements_value = null; /* 049 */ if (!mapelements_isNull) { /* 050 */ Object mapelements_funcResult = null; /* 051 */ mapelements_funcResult = mapelements_value1.apply(inputadapter_value); /* 052 */ if (mapelements_funcResult == null) { /* 053 */ mapelements_isNull = true; /* 054 */ } else { /* 055 */ mapelements_value = (int[]) mapelements_funcResult; /* 056 */ } /* 057 */ /* 058 */ } /* 059 */ mapelements_isNull = mapelements_value == null; /* 060 */ /* 061 */ serializefromobject_argIsNulls[0] = mapelements_isNull; /* 062 */ serializefromobject_argValue = mapelements_value; /* 063 */ /* 064 */ boolean serializefromobject_isNull = false; /* 065 */ for (int idx = 0; idx < 1; idx++) { /* 066 */ if (serializefromobject_argIsNulls[idx]) { serializefromobject_isNull = true; break; } /* 067 */ } /* 068 */ /* 069 */ final ArrayData serializefromobject_value = serializefromobject_isNull ? null : new org.apache.spark.sql.catalyst.util.GenericArrayData(serializefromobject_argValue); /* 070 */ serializefromobject_holder.reset(); /* 071 */ /* 072 */ serializefromobject_rowWriter.zeroOutNullBytes(); /* 073 */ /* 074 */ if (serializefromobject_isNull) { /* 075 */ serializefromobject_rowWriter.setNullAt(0); /* 076 */ } else { /* 077 */ // Remember the current cursor so that we can calculate how many bytes are /* 078 */ // written later. /* 079 */ final int serializefromobject_tmpCursor = serializefromobject_holder.cursor; /* 080 */ /* 081 */ if (serializefromobject_value instanceof UnsafeArrayData) { /* 082 */ final int serializefromobject_sizeInBytes = ((UnsafeArrayData) serializefromobject_value).getSizeInBytes(); /* 083 */ // grow the global buffer before writing data. /* 084 */ serializefromobject_holder.grow(serializefromobject_sizeInBytes); /* 085 */ ((UnsafeArrayData) serializefromobject_value).writeToMemory(serializefromobject_holder.buffer, serializefromobject_holder.cursor); /* 086 */ serializefromobject_holder.cursor += serializefromobject_sizeInBytes; /* 087 */ /* 088 */ } else { /* 089 */ final int serializefromobject_numElements = serializefromobject_value.numElements(); /* 090 */ serializefromobject_arrayWriter.initialize(serializefromobject_holder, serializefromobject_numElements, 4); /* 091 */ /* 092 */ for (int serializefromobject_index = 0; serializefromobject_index < serializefromobject_numElements; serializefromobject_index++) { /* 093 */ if (serializefromobject_value.isNullAt(serializefromobject_index)) { /* 094 */ serializefromobject_arrayWriter.setNullInt(serializefromobject_index); /* 095 */ } else { /* 096 */ final int serializefromobject_element = serializefromobject_value.getInt(serializefromobject_index); /* 097 */ serializefromobject_arrayWriter.write(serializefromobject_index, serializefromobject_element); /* 098 */ } /* 099 */ } /* 100 */ } /* 101 */ /* 102 */ serializefromobject_rowWriter.setOffsetAndSize(0, serializefromobject_tmpCursor, serializefromobject_holder.cursor - serializefromobject_tmpCursor); /* 103 */ } /* 104 */ serializefromobject_result.setTotalSize(serializefromobject_holder.totalSize()); /* 105 */ append(serializefromobject_result); /* 106 */ if (shouldStop()) return; /* 107 */ } /* 108 */ } /* 109 */ } ``` Generated code after applying this PR ``` java /* 035 */ protected void processNext() throws java.io.IOException { /* 036 */ while (inputadapter_input.hasNext()) { /* 037 */ InternalRow inputadapter_row = (InternalRow) inputadapter_input.next(); /* 038 */ int[] inputadapter_value = (int[])inputadapter_row.get(0, null); /* 039 */ /* 040 */ Object mapelements_obj = ((Expression) references[0]).eval(null); /* 041 */ scala.Function1 mapelements_value1 = (scala.Function1) mapelements_obj; /* 042 */ /* 043 */ boolean mapelements_isNull = false || false; /* 044 */ int[] mapelements_value = null; /* 045 */ if (!mapelements_isNull) { /* 046 */ Object mapelements_funcResult = null; /* 047 */ mapelements_funcResult = mapelements_value1.apply(inputadapter_value); /* 048 */ if (mapelements_funcResult == null) { /* 049 */ mapelements_isNull = true; /* 050 */ } else { /* 051 */ mapelements_value = (int[]) mapelements_funcResult; /* 052 */ } /* 053 */ /* 054 */ } /* 055 */ mapelements_isNull = mapelements_value == null; /* 056 */ /* 057 */ boolean serializefromobject_isNull = mapelements_isNull; /* 058 */ final ArrayData serializefromobject_value = serializefromobject_isNull ? null : org.apache.spark.sql.catalyst.expressions.UnsafeArrayData.fromPrimitiveArray(mapelements_value); /* 059 */ serializefromobject_isNull = serializefromobject_value == null; /* 060 */ serializefromobject_holder.reset(); /* 061 */ /* 062 */ serializefromobject_rowWriter.zeroOutNullBytes(); /* 063 */ /* 064 */ if (serializefromobject_isNull) { /* 065 */ serializefromobject_rowWriter.setNullAt(0); /* 066 */ } else { /* 067 */ // Remember the current cursor so that we can calculate how many bytes are /* 068 */ // written later. /* 069 */ final int serializefromobject_tmpCursor = serializefromobject_holder.cursor; /* 070 */ /* 071 */ if (serializefromobject_value instanceof UnsafeArrayData) { /* 072 */ final int serializefromobject_sizeInBytes = ((UnsafeArrayData) serializefromobject_value).getSizeInBytes(); /* 073 */ // grow the global buffer before writing data. /* 074 */ serializefromobject_holder.grow(serializefromobject_sizeInBytes); /* 075 */ ((UnsafeArrayData) serializefromobject_value).writeToMemory(serializefromobject_holder.buffer, serializefromobject_holder.cursor); /* 076 */ serializefromobject_holder.cursor += serializefromobject_sizeInBytes; /* 077 */ /* 078 */ } else { /* 079 */ final int serializefromobject_numElements = serializefromobject_value.numElements(); /* 080 */ serializefromobject_arrayWriter.initialize(serializefromobject_holder, serializefromobject_numElements, 4); /* 081 */ /* 082 */ for (int serializefromobject_index = 0; serializefromobject_index < serializefromobject_numElements; serializefromobject_index++) { /* 083 */ if (serializefromobject_value.isNullAt(serializefromobject_index)) { /* 084 */ serializefromobject_arrayWriter.setNullInt(serializefromobject_index); /* 085 */ } else { /* 086 */ final int serializefromobject_element = serializefromobject_value.getInt(serializefromobject_index); /* 087 */ serializefromobject_arrayWriter.write(serializefromobject_index, serializefromobject_element); /* 088 */ } /* 089 */ } /* 090 */ } /* 091 */ /* 092 */ serializefromobject_rowWriter.setOffsetAndSize(0, serializefromobject_tmpCursor, serializefromobject_holder.cursor - serializefromobject_tmpCursor); /* 093 */ } /* 094 */ serializefromobject_result.setTotalSize(serializefromobject_holder.totalSize()); /* 095 */ append(serializefromobject_result); /* 096 */ if (shouldStop()) return; /* 097 */ } /* 098 */ } /* 099 */ } ``` ## How was this patch tested? Added a test in `DatasetSuite`, `RowEncoderSuite`, and `CatalystTypeConvertersSuite` Author: Kazuaki Ishizaki <[email protected]> Closes apache#15044 from kiszk/SPARK-17490.
What changes were proposed in this pull request?
This PR introduces more compact representation for
UnsafeArrayData.UnsafeArrayDataneeds to acceptnullvalue in each entry of an array. In the current version, it has three partsOffsetshas the number ofnumElements, and representsnullif its value is negative. It may increase memory footprint, and introduces an indirection for accessing each ofvalues.This PR uses bitvectors to represent nullability for each element like
UnsafeRow, and eliminates an indirection for accessing each element. The newUnsafeArrayDatahas four parts.In the
null bitsregion, we store 1 bit per element, represents whether an element is null. Its total size is ceil(numElements / 8) bytes, and it is aligned to 8-byte boundaries.In the
values or offset&lengthregion, we store the content of elements. For fields that hold fixed-length primitive types, such as long, double, or int, we store the value directly in the field. For fields with non-primitive or variable-length values, we store a relative offset (w.r.t. the base address of the array) that points to the beginning of the variable-length field and length (they are combined into a long). Each is word-aligned. Forvariable length portion, each is aligned to 8-byte boundaries.The new format can reduce memory footprint and improve performance of accessing each element. An example of memory foot comparison:
1024x1024 elements integer array
Size of
baseObjectforUnsafeArrayData: 8 + 1024x1024 + 1024x1024 = 2M bytesSize of
baseObjectforUnsafeArrayData: 8 + 1024x1024/8 + 1024x1024 = 1.25M bytesIn summary, we got 1.0-2.6x performance improvements over the code before applying this PR.
Here are performance results of benchmark programs:
Read UnsafeArrayData: 1.7x and 1.6x performance improvements over the code before applying this PR
Write UnsafeArrayData: 1.0x and 1.1x performance improvements over the code before applying this PR
Get primitive array from UnsafeArrayData: 2.6x and 1.6x performance improvements over the code before applying this PR
Create UnsafeArrayData from primitive array: 1.7x and 2.1x performance improvements over the code before applying this PR
1.7x and 1.4x performance improvements in
UDTSerializationBenchmarkover the code before applying this PRHow was this patch tested?
Added unit tests into
UnsafeArraySuite