Skip to content

Conversation

@tdas
Copy link
Contributor

@tdas tdas commented May 10, 2016

What changes were proposed in this pull request?

Table partitions can be added with locations different from default warehouse location of a hive table.
CREATE TABLE parquetTable (a int) PARTITIONED BY (b int) STORED AS parquet
ALTER TABLE parquetTable ADD PARTITION (b=1) LOCATION '/path/1'
Querying such a table throws error as the MetastoreFileCatalog does not list the added partition directory, it only lists the default base location.

[info] - SPARK-15248: explicitly added partitions should be readable *** FAILED *** (1 second, 8 milliseconds)
[info]   java.util.NoSuchElementException: key not found: file:/Users/tdas/Projects/Spark/spark2/target/tmp/spark-b39ad224-c5d1-4966-8981-fb45a2066d61/partition
[info]   at scala.collection.MapLike$class.default(MapLike.scala:228)
[info]   at scala.collection.AbstractMap.default(Map.scala:59)
[info]   at scala.collection.MapLike$class.apply(MapLike.scala:141)
[info]   at scala.collection.AbstractMap.apply(Map.scala:59)
[info]   at org.apache.spark.sql.execution.datasources.PartitioningAwareFileCatalog$$anonfun$listFiles$1.apply(PartitioningAwareFileCatalog.scala:59)
[info]   at org.apache.spark.sql.execution.datasources.PartitioningAwareFileCatalog$$anonfun$listFiles$1.apply(PartitioningAwareFileCatalog.scala:55)
[info]   at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
[info]   at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
[info]   at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
[info]   at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
[info]   at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
[info]   at scala.collection.AbstractTraversable.map(Traversable.scala:104)
[info]   at org.apache.spark.sql.execution.datasources.PartitioningAwareFileCatalog.listFiles(PartitioningAwareFileCatalog.scala:55)
[info]   at org.apache.spark.sql.execution.datasources.FileSourceStrategy$.apply(FileSourceStrategy.scala:93)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:59)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:59)
[info]   at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
[info]   at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:60)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner.planLater(QueryPlanner.scala:55)
[info]   at org.apache.spark.sql.execution.SparkStrategies$SpecialLimits$.apply(SparkStrategies.scala:55)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:59)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:59)
[info]   at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
[info]   at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:60)
[info]   at org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:77)
[info]   at org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:75)
[info]   at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:82)
[info]   at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:82)
[info]   at org.apache.spark.sql.QueryTest.assertEmptyMissingInput(QueryTest.scala:330)
[info]   at org.apache.spark.sql.QueryTest.checkAnswer(QueryTest.scala:146)
[info]   at org.apache.spark.sql.QueryTest.checkAnswer(QueryTest.scala:159)
[info]   at org.apache.spark.sql.hive.ParquetMetastoreSuite$$anonfun$12$$anonfun$apply$mcV$sp$7$$anonfun$apply$mcV$sp$25.apply(parquetSuites.scala:554)
[info]   at org.apache.spark.sql.hive.ParquetMetastoreSuite$$anonfun$12$$anonfun$apply$mcV$sp$7$$anonfun$apply$mcV$sp$25.apply(parquetSuites.scala:535)
[info]   at org.apache.spark.sql.test.SQLTestUtils$class.withTempDir(SQLTestUtils.scala:125)
[info]   at org.apache.spark.sql.hive.ParquetPartitioningTest.withTempDir(parquetSuites.scala:726)
[info]   at org.apache.spark.sql.hive.ParquetMetastoreSuite$$anonfun$12$$anonfun$apply$mcV$sp$7.apply$mcV$sp(parquetSuites.scala:535)
[info]   at org.apache.spark.sql.test.SQLTestUtils$class.withTable(SQLTestUtils.scala:166)
[info]   at org.apache.spark.sql.hive.ParquetPartitioningTest.withTable(parquetSuites.scala:726)
[info]   at org.apache.spark.sql.hive.ParquetMetastoreSuite$$anonfun$12.apply$mcV$sp(parquetSuites.scala:534)
[info]   at org.apache.spark.sql.hive.ParquetMetastoreSuite$$anonfun$12.apply(parquetSuites.scala:534)
[info]   at org.apache.spark.sql.hive.ParquetMetastoreSuite$$anonfun$12.apply(parquetSuites.scala:534)

The solution in this PR to get the paths to list from the partition spec and not rely on the default table path alone.

How was this patch tested?

unit tests.

@SparkQA
Copy link

SparkQA commented May 10, 2016

Test build #58224 has finished for PR 13022 at commit 29148c9.

  • This patch fails Spark unit tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@tdas
Copy link
Contributor Author

tdas commented May 10, 2016

@yhuai Please take a look.

/** Get the list of non-overalapping paths to list files in the for a metastore table */
def getPaths(tableBasePath: Path, partitionSpec: PartitionSpec): Seq[Path] = {
val basePathStr = tableBasePath.toUri.toString
val partitionsOutsideBasePath = partitionSpec
Copy link
Contributor Author

@tdas tdas May 10, 2016

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@yin this is the hacky thing. I want to make sure that the seq of paths does not contains both
tableBasePath as well as tableBasePath/partition=1. Having both parent dir and sub dir might cause the listing to do duplicate work.

Option1: Use substring match to eliminate partition paths that are anyways covered in the base path. This is what I have done.

Option 2: (just occurred to me, I think this is cleaner)

if (partitionSpec.partitions.nonEmpty) {
   partitionSpec.partitions.map(_.path)
} else {
  Seq(tableBasePath)
}

Which do you think is better?
Note that the list of path determines the match with cached HadoopFsRelation objects.

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I spent some time analyzing your problem and I agree with your second option. Why am I included in this discussion anyways? I never contributed to Spark.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oh, sorry. @tdas was trying to cc me.

@SparkQA
Copy link

SparkQA commented May 10, 2016

Test build #58284 has finished for PR 13022 at commit 8ab243c.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

* @param tableBasePath The default base path of the Hive metastore table
* @param partitionSpec The partition specifications from Hive metastore
*/
private[hive] class MetaStoreFileCatalog(
Copy link
Contributor Author

@tdas tdas May 11, 2016

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@yin I am inclined to rename this class to MetastorePartitionedTableFileCatalog as this is only used for partitioned tables, and therefore does not need to worry about what files to return when the tables is not partitioned.

@SparkQA
Copy link

SparkQA commented May 11, 2016

Test build #58297 has finished for PR 13022 at commit 6b81f8f.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.


case None =>
// Directory does not exist, or has not children files
Nil
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For the stacktrace in the description, how did we create the path of file:/Users/tdas/Projects/Spark/spark2/target/tmp/spark-b39ad224-c5d1-4966-8981-fb45a2066d61/partition?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I ran the test in this PR without the changes in source.
What is your concern?

@yhuai
Copy link
Contributor

yhuai commented May 11, 2016

LGTM. Merging to master and branch 2.0

asfgit pushed a commit that referenced this pull request May 11, 2016
…m partition specs of a partitioned metastore table

Table partitions can be added with locations different from default warehouse location of a hive table.
`CREATE TABLE parquetTable (a int) PARTITIONED BY (b int) STORED AS parquet `
`ALTER TABLE parquetTable ADD PARTITION (b=1) LOCATION '/partition'`
Querying such a table throws error as the MetastoreFileCatalog does not list the added partition directory, it only lists the default base location.

```
[info] - SPARK-15248: explicitly added partitions should be readable *** FAILED *** (1 second, 8 milliseconds)
[info]   java.util.NoSuchElementException: key not found: file:/Users/tdas/Projects/Spark/spark2/target/tmp/spark-b39ad224-c5d1-4966-8981-fb45a2066d61/partition
[info]   at scala.collection.MapLike$class.default(MapLike.scala:228)
[info]   at scala.collection.AbstractMap.default(Map.scala:59)
[info]   at scala.collection.MapLike$class.apply(MapLike.scala:141)
[info]   at scala.collection.AbstractMap.apply(Map.scala:59)
[info]   at org.apache.spark.sql.execution.datasources.PartitioningAwareFileCatalog$$anonfun$listFiles$1.apply(PartitioningAwareFileCatalog.scala:59)
[info]   at org.apache.spark.sql.execution.datasources.PartitioningAwareFileCatalog$$anonfun$listFiles$1.apply(PartitioningAwareFileCatalog.scala:55)
[info]   at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
[info]   at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
[info]   at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
[info]   at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
[info]   at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
[info]   at scala.collection.AbstractTraversable.map(Traversable.scala:104)
[info]   at org.apache.spark.sql.execution.datasources.PartitioningAwareFileCatalog.listFiles(PartitioningAwareFileCatalog.scala:55)
[info]   at org.apache.spark.sql.execution.datasources.FileSourceStrategy$.apply(FileSourceStrategy.scala:93)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:59)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:59)
[info]   at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
[info]   at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:60)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner.planLater(QueryPlanner.scala:55)
[info]   at org.apache.spark.sql.execution.SparkStrategies$SpecialLimits$.apply(SparkStrategies.scala:55)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:59)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:59)
[info]   at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
[info]   at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
[info]   at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:60)
[info]   at org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:77)
[info]   at org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:75)
[info]   at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:82)
[info]   at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:82)
[info]   at org.apache.spark.sql.QueryTest.assertEmptyMissingInput(QueryTest.scala:330)
[info]   at org.apache.spark.sql.QueryTest.checkAnswer(QueryTest.scala:146)
[info]   at org.apache.spark.sql.QueryTest.checkAnswer(QueryTest.scala:159)
[info]   at org.apache.spark.sql.hive.ParquetMetastoreSuite$$anonfun$12$$anonfun$apply$mcV$sp$7$$anonfun$apply$mcV$sp$25.apply(parquetSuites.scala:554)
[info]   at org.apache.spark.sql.hive.ParquetMetastoreSuite$$anonfun$12$$anonfun$apply$mcV$sp$7$$anonfun$apply$mcV$sp$25.apply(parquetSuites.scala:535)
[info]   at org.apache.spark.sql.test.SQLTestUtils$class.withTempDir(SQLTestUtils.scala:125)
[info]   at org.apache.spark.sql.hive.ParquetPartitioningTest.withTempDir(parquetSuites.scala:726)
[info]   at org.apache.spark.sql.hive.ParquetMetastoreSuite$$anonfun$12$$anonfun$apply$mcV$sp$7.apply$mcV$sp(parquetSuites.scala:535)
[info]   at org.apache.spark.sql.test.SQLTestUtils$class.withTable(SQLTestUtils.scala:166)
[info]   at org.apache.spark.sql.hive.ParquetPartitioningTest.withTable(parquetSuites.scala:726)
[info]   at org.apache.spark.sql.hive.ParquetMetastoreSuite$$anonfun$12.apply$mcV$sp(parquetSuites.scala:534)
[info]   at org.apache.spark.sql.hive.ParquetMetastoreSuite$$anonfun$12.apply(parquetSuites.scala:534)
[info]   at org.apache.spark.sql.hive.ParquetMetastoreSuite$$anonfun$12.apply(parquetSuites.scala:534)
```

The solution in this PR to get the paths to list from the partition spec and not rely on the default table path alone.

unit tests.

Author: Tathagata Das <[email protected]>

Closes #13022 from tdas/SPARK-15248.

(cherry picked from commit 81c68ec)
Signed-off-by: Yin Huai <[email protected]>
@asfgit asfgit closed this in 81c68ec May 11, 2016
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants