[SPARK-14714][ML][PYTHON] Fixed issues with non-kwarg typeConverter arg for Param constructor #12480
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
What changes were proposed in this pull request?
PySpark Param constructors need to pass the TypeConverter argument by name, partly to make sure it is not mistaken for the expectedType arg and partly because we will remove the expectedType arg in 2.1. In several places, this is not being done correctly.
This PR changes all usages in pyspark/ml/ to keyword args.
How was this patch tested?
Existing unit tests. I will not test type conversion for every Param unless we really think it necessary.
Also, if you start the PySpark shell and import classes (e.g., pyspark.ml.feature.StandardScaler), then you no longer get this warning:
That warning came from the typeConverter argument being passes as the expectedType arg by mistake.