Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.ml.feature

import org.apache.spark.annotation.{Experimental, Since}
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.param.shared.{HasInputCol, HasOutputCol}
import org.apache.spark.ml.Transformer
import org.apache.spark.ml.util.{DefaultParamsReadable, DefaultParamsWritable, Identifiable}
import org.apache.spark.mllib.linalg.{Matrices, MatrixUDT}
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{StructField, StructType}

/**
* :: Experimental ::
* Binarize a column of continuous features given a set of labels.
*/

@Experimental
final class LabelBinarizer @Since("2.0.0")(override val uid: String)
extends Transformer with HasInputCol with HasOutputCol with DefaultParamsWritable {

def this() = this(Identifiable.randomUID("labelBinarizer"))

/** @group setParam */
def setInputCol(value: String): this.type = set(inputCol, value)

/** @group setParam */
def setOutputCol(value: String): this.type = set(outputCol, value)

override def transform(dataset: DataFrame): DataFrame = {
transformSchema(dataset.schema, logging = true)

val iter = udf { (s: String) =>
val arr = s.split(",")
val len = arr.length
val clsLen = arr.distinct.length
val vec: Array[Double] = new Array(len * clsLen)
var i: Int = 0
var j: Int = 0
arr.distinct.sortWith(_ < _).foreach { (v: String) =>
while (i < arr.length) {
val idx: Int = arr.indexOf(v, i)
if (idx != -1) {
vec.update(idx + j, 1)
}
i += 1
}
i = 0
j += len
}
Matrices.dense(len, clsLen, vec)
}
dataset.withColumn($(outputCol), iter(col($(inputCol))))
}

override def transformSchema(schema: StructType): StructType = {
val outputColName = $(outputCol)
val inputType = schema($(inputCol)).dataType

if (!inputType.typeName.equals("string")) {
throw new IllegalArgumentException(s"Data type $inputType is not supported.")
}

if (schema.fieldNames.contains(outputColName)) {
throw new IllegalArgumentException(s"Output column $outputColName already exists.")
}
val outputFields = schema.fields :+ StructField($(outputCol), new MatrixUDT, false)
StructType(outputFields)
}

override def copy(extra: ParamMap): LabelBinarizer = defaultCopy(extra)
}

@Since("1.6.0")
object LabelBinarizer extends DefaultParamsReadable[LabelBinarizer] {

@Since("1.6.0")
override def load(path: String): LabelBinarizer = super.load(path)
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.ml.feature

import org.apache.spark.SparkFunSuite
import org.apache.spark.mllib.linalg.{Matrices, Matrix}
import org.apache.spark.ml.util.DefaultReadWriteTest
import org.apache.spark.mllib.util.MLlibTestSparkContext
import org.apache.spark.sql._

class LabelBinarizerSuiter extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {
test("Label binarize one-class case") {
val data = Array("pos,pos,pos,pos")
val expected: Array[Matrix] = Array(
Matrices.dense(4, 1, Array(1.0, 1.0, 1.0, 1.0)))
val dataFrame: DataFrame = sqlContext.createDataFrame(
data.zip(expected)).toDF("feature", "expected")

val lBinarizer: LabelBinarizer = new LabelBinarizer()
.setInputCol("feature")
.setOutputCol("binarized_feature")

lBinarizer.transform(dataFrame).select("binarized_feature", "expected").collect().foreach {
case Row(x: Matrix, y: Matrix) =>
assert(x === y, "The feature value is not correct after binarization.")
}
}

test("Label binarize two-class case") {
val data = Array("pos,neg,neg,pos")
val expected: Array[Matrix] = Array(
Matrices.dense(4, 2, Array(0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0)))
val dataFrame: DataFrame = sqlContext.createDataFrame(
data.zip(expected)).toDF("feature", "expected")

val lBinarizer: LabelBinarizer = new LabelBinarizer()
.setInputCol("feature")
.setOutputCol("binarized_feature")

lBinarizer.transform(dataFrame).select("binarized_feature", "expected").collect().foreach {
case Row(x: Matrix, y: Matrix) =>
assert(x === y, "The feature value is not correct after binarization.")
}
}

test("Label binarize multi-class case") {
val data = Array("yellow,green,red,green,0")
val expected: Array[Matrix] = Array(
Matrices.dense(5, 4,
Array(0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0)))
val dataFrame: DataFrame = sqlContext.createDataFrame(
data.zip(expected)).toDF("feature", "expected")

val lBinarizer: LabelBinarizer = new LabelBinarizer()
.setInputCol("feature")
.setOutputCol("binarized_feature")

lBinarizer.transform(dataFrame).select("binarized_feature", "expected").collect().foreach {
case Row(x: Matrix, y: Matrix) =>
assert(x === y, "The feature value is not correct after binarization.")
}
}

test("Label binarize combination case") {
val data = Array("yellow,green,red,green,0",
"pos,neg,neg,pos")
val expected: Array[Matrix] = Array(
Matrices.dense(5, 4,
Array(0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0)),
Matrices.dense(4, 2, Array(0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0))
)
val dataFrame: DataFrame = sqlContext.createDataFrame(
data.zip(expected)).toDF("feature", "expected")

val lBinarizer: LabelBinarizer = new LabelBinarizer()
.setInputCol("feature")
.setOutputCol("binarized_feature")

lBinarizer.transform(dataFrame).select("binarized_feature", "expected").collect().foreach {
case Row(x: Matrix, y: Matrix) =>
assert(x === y, "The feature value is not correct after binarization.")
}
}

test("read/write") {
val t = new Binarizer()
.setInputCol("myInputCol")
.setOutputCol("myOutputCol")
.setThreshold(0.1)
testDefaultReadWrite(t)
}
}