Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.execution.aggregate

import org.apache.spark.sql.catalyst.expressions.codegen.CodegenContext
import org.apache.spark.sql.types.StructType

/**
* This is a helper object to generate an append-only single-key/single value aggregate hash
* map that can act as a 'cache' for extremely fast key-value lookups while evaluating aggregates
* (and fall back to the `BytesToBytesMap` if a given key isn't found). This is 'codegened' in
* TungstenAggregate to speed up aggregates w/ key.
*
* It is backed by a power-of-2-sized array for index lookups and a columnar batch that stores the
* key-value pairs. The index lookups in the array rely on linear probing (with a small number of
* maximum tries) and use an inexpensive hash function which makes it really efficient for a
* majority of lookups. However, using linear probing and an inexpensive hash function also makes it
* less robust as compared to the `BytesToBytesMap` (especially for a large number of keys or even
* for certain distribution of keys) and requires us to fall back on the latter for correctness.
*/
class ColumnarAggMapCodeGenerator(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This class can be private, right ?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

everything in execution is private

ctx: CodegenContext,
generatedClassName: String,
groupingKeySchema: StructType,
bufferSchema: StructType) {
val groupingKeys = groupingKeySchema.map(k => (k.dataType.typeName, ctx.freshName("key")))
val bufferValues = bufferSchema.map(k => (k.dataType.typeName, ctx.freshName("value")))
val groupingKeySignature = groupingKeys.map(_.productIterator.toList.mkString(" ")).mkString(", ")

def generate(): String = {
s"""
|public class $generatedClassName {
|${initializeAggregateHashMap()}
|
|${generateFindOrInsert()}
|
|${generateEquals()}
|
|${generateHashFunction()}
|}
""".stripMargin
}

private def initializeAggregateHashMap(): String = {
val generatedSchema: String =
s"""
|new org.apache.spark.sql.types.StructType()
|${(groupingKeySchema ++ bufferSchema).map(key =>
s""".add("${key.name}", org.apache.spark.sql.types.DataTypes.${key.dataType})""")
.mkString("\n")};
""".stripMargin

s"""
| private org.apache.spark.sql.execution.vectorized.ColumnarBatch batch;
| private int[] buckets;
| private int numBuckets;
| private int maxSteps;
| private int numRows = 0;
| private org.apache.spark.sql.types.StructType schema = $generatedSchema
|
| public $generatedClassName(int capacity, double loadFactor, int maxSteps) {
| assert (capacity > 0 && ((capacity & (capacity - 1)) == 0));
| this.maxSteps = maxSteps;
| numBuckets = (int) (capacity / loadFactor);
| batch = org.apache.spark.sql.execution.vectorized.ColumnarBatch.allocate(schema,
| org.apache.spark.memory.MemoryMode.ON_HEAP, capacity);
| buckets = new int[numBuckets];
| java.util.Arrays.fill(buckets, -1);
| }
|
| public $generatedClassName() {
| new $generatedClassName(1 << 16, 0.25, 5);
| }
""".stripMargin
}

/**
* Generates a method that computes a hash by currently xor-ing all individual group-by keys. For
* instance, if we have 2 long group-by keys, the generated function would be of the form:
*
* {{{
* private long hash(long agg_key, long agg_key1) {
* return agg_key ^ agg_key1;
* }
* }}}
*/
private def generateHashFunction(): String = {
s"""
|// TODO: Improve this hash function
|private long hash($groupingKeySignature) {
| return ${groupingKeys.map(_._2).mkString(" ^ ")};
|}
""".stripMargin
}

/**
* Generates a method that returns true if the group-by keys exist at a given index in the
* associated [[org.apache.spark.sql.execution.vectorized.ColumnarBatch]]. For instance, if we
* have 2 long group-by keys, the generated function would be of the form:
*
* {{{
* private boolean equals(int idx, long agg_key, long agg_key1) {
* return batch.column(0).getLong(buckets[idx]) == agg_key &&
* batch.column(1).getLong(buckets[idx]) == agg_key1;
* }
* }}}
*/
private def generateEquals(): String = {
s"""
|private boolean equals(int idx, $groupingKeySignature) {
| return ${groupingKeys.zipWithIndex.map(k =>
s"batch.column(${k._2}).getLong(buckets[idx]) == ${k._1._2}").mkString(" && ")};
|}
""".stripMargin
}

/**
* Generates a method that returns a mutable
* [[org.apache.spark.sql.execution.vectorized.ColumnarBatch.Row]] which keeps track of the
* aggregate value(s) for a given set of keys. If the corresponding row doesn't exist, the
* generated method adds the corresponding row in the associated
* [[org.apache.spark.sql.execution.vectorized.ColumnarBatch]]. For instance, if we
* have 2 long group-by keys, the generated function would be of the form:
*
* {{{
* public org.apache.spark.sql.execution.vectorized.ColumnarBatch.Row findOrInsert(
* long agg_key, long agg_key1) {
* long h = hash(agg_key, agg_key1);
* int step = 0;
* int idx = (int) h & (numBuckets - 1);
* while (step < maxSteps) {
* // Return bucket index if it's either an empty slot or already contains the key
* if (buckets[idx] == -1) {
* batch.column(0).putLong(numRows, agg_key);
* batch.column(1).putLong(numRows, agg_key1);
* batch.column(2).putLong(numRows, 0);
* buckets[idx] = numRows++;
* return batch.getRow(buckets[idx]);
* } else if (equals(idx, agg_key, agg_key1)) {
* return batch.getRow(buckets[idx]);
* }
* idx = (idx + 1) & (numBuckets - 1);
* step++;
* }
* // Didn't find it
* return null;
* }
* }}}
*/
private def generateFindOrInsert(): String = {
s"""
|public org.apache.spark.sql.execution.vectorized.ColumnarBatch.Row findOrInsert(${
groupingKeySignature}) {
| long h = hash(${groupingKeys.map(_._2).mkString(", ")});
| int step = 0;
| int idx = (int) h & (numBuckets - 1);
| while (step < maxSteps) {
| // Return bucket index if it's either an empty slot or already contains the key
| if (buckets[idx] == -1) {
| ${groupingKeys.zipWithIndex.map(k =>
s"batch.column(${k._2}).putLong(numRows, ${k._1._2});").mkString("\n")}
| ${bufferValues.zipWithIndex.map(k =>
s"batch.column(${groupingKeys.length + k._2}).putLong(numRows, 0);")
.mkString("\n")}
| buckets[idx] = numRows++;
| return batch.getRow(buckets[idx]);
| } else if (equals(idx, ${groupingKeys.map(_._2).mkString(", ")})) {
| return batch.getRow(buckets[idx]);
| }
| idx = (idx + 1) & (numBuckets - 1);
| step++;
| }
| // Didn't find it
| return null;
|}
""".stripMargin
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ import org.apache.spark.sql.catalyst.expressions.codegen._
import org.apache.spark.sql.catalyst.plans.physical._
import org.apache.spark.sql.execution._
import org.apache.spark.sql.execution.metric.SQLMetrics
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.{LongType, StructType}
import org.apache.spark.unsafe.KVIterator

case class TungstenAggregate(
Expand Down Expand Up @@ -64,8 +64,8 @@ case class TungstenAggregate(

override def requiredChildDistribution: List[Distribution] = {
requiredChildDistributionExpressions match {
case Some(exprs) if exprs.length == 0 => AllTuples :: Nil
case Some(exprs) if exprs.length > 0 => ClusteredDistribution(exprs) :: Nil
case Some(exprs) if exprs.isEmpty => AllTuples :: Nil
case Some(exprs) if exprs.nonEmpty => ClusteredDistribution(exprs) :: Nil
case None => UnspecifiedDistribution :: Nil
}
}
Expand Down Expand Up @@ -437,6 +437,19 @@ case class TungstenAggregate(
val initAgg = ctx.freshName("initAgg")
ctx.addMutableState("boolean", initAgg, s"$initAgg = false;")

// create AggregateHashMap
val isAggregateHashMapEnabled: Boolean = false
val isAggregateHashMapSupported: Boolean =
(groupingKeySchema ++ bufferSchema).forall(_.dataType == LongType)
val aggregateHashMapTerm = ctx.freshName("aggregateHashMap")
val aggregateHashMapClassName = ctx.freshName("GeneratedAggregateHashMap")
val aggregateHashMapGenerator = new ColumnarAggMapCodeGenerator(ctx, aggregateHashMapClassName,
groupingKeySchema, bufferSchema)
if (isAggregateHashMapEnabled && isAggregateHashMapSupported) {
ctx.addMutableState(aggregateHashMapClassName, aggregateHashMapTerm,
s"$aggregateHashMapTerm = new $aggregateHashMapClassName();")
}

// create hashMap
val thisPlan = ctx.addReferenceObj("plan", this)
hashMapTerm = ctx.freshName("hashMap")
Expand All @@ -452,6 +465,7 @@ case class TungstenAggregate(
val doAgg = ctx.freshName("doAggregateWithKeys")
ctx.addNewFunction(doAgg,
s"""
${if (isAggregateHashMapSupported) aggregateHashMapGenerator.generate() else ""}
private void $doAgg() throws java.io.IOException {
${child.asInstanceOf[CodegenSupport].produce(ctx, this)}

Expand Down