Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 14 additions & 2 deletions python/pyspark/ml/classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -278,7 +278,8 @@ class GBTParams(TreeEnsembleParams):
@inherit_doc
class DecisionTreeClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol,
HasProbabilityCol, HasRawPredictionCol, DecisionTreeParams,
TreeClassifierParams, HasCheckpointInterval, HasSeed):
TreeClassifierParams, HasCheckpointInterval, HasSeed, JavaMLWritable,
JavaMLReadable):
"""
`http://en.wikipedia.org/wiki/Decision_tree_learning Decision tree`
learning algorithm for classification.
Expand Down Expand Up @@ -313,6 +314,17 @@ class DecisionTreeClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPred
>>> model.transform(test1).head().prediction
1.0

>>> dtc_path = temp_path + "/dtc"
>>> dt.save(dtc_path)
>>> dt2 = DecisionTreeClassifier.load(dtc_path)
>>> dt2.getMaxDepth()
2
>>> model_path = temp_path + "/dtc_model"
>>> model.save(model_path)
>>> model2 = DecisionTreeClassificationModel.load(model_path)
>>> model.featureImportances == model2.featureImportances
True

.. versionadded:: 1.4.0
"""

Expand Down Expand Up @@ -361,7 +373,7 @@ def _create_model(self, java_model):


@inherit_doc
class DecisionTreeClassificationModel(DecisionTreeModel):
class DecisionTreeClassificationModel(DecisionTreeModel, JavaMLWritable, JavaMLReadable):
"""
Model fitted by DecisionTreeClassifier.

Expand Down
16 changes: 14 additions & 2 deletions python/pyspark/ml/regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -389,7 +389,7 @@ class GBTParams(TreeEnsembleParams):
@inherit_doc
class DecisionTreeRegressor(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol,
DecisionTreeParams, TreeRegressorParams, HasCheckpointInterval,
HasSeed):
HasSeed, JavaMLWritable, JavaMLReadable):
"""
`http://en.wikipedia.org/wiki/Decision_tree_learning Decision tree`
learning algorithm for regression.
Expand All @@ -413,6 +413,18 @@ class DecisionTreeRegressor(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredi
>>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
>>> model.transform(test1).head().prediction
1.0
>>> dtr_path = temp_path + "/dtr"
>>> dt.save(dtr_path)
>>> dt2 = DecisionTreeRegressor.load(dtr_path)
>>> dt2.getMaxDepth()
2
>>> model_path = temp_path + "/dtr_model"
>>> model.save(model_path)
>>> model2 = DecisionTreeRegressionModel.load(model_path)
>>> model.numNodes == model2.numNodes
True
>>> model.depth == model2.depth
True

.. versionadded:: 1.4.0
"""
Expand Down Expand Up @@ -498,7 +510,7 @@ def __repr__(self):


@inherit_doc
class DecisionTreeRegressionModel(DecisionTreeModel):
class DecisionTreeRegressionModel(DecisionTreeModel, JavaMLWritable, JavaMLReadable):
"""
Model fitted by DecisionTreeRegressor.

Expand Down
40 changes: 38 additions & 2 deletions python/pyspark/ml/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,13 +42,13 @@
import numpy as np

from pyspark.ml import Estimator, Model, Pipeline, PipelineModel, Transformer
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.classification import LogisticRegression, DecisionTreeClassifier
from pyspark.ml.clustering import KMeans
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.feature import *
from pyspark.ml.param import Param, Params, TypeConverters
from pyspark.ml.param.shared import HasMaxIter, HasInputCol, HasSeed
from pyspark.ml.regression import LinearRegression
from pyspark.ml.regression import LinearRegression, DecisionTreeRegressor
from pyspark.ml.tuning import *
from pyspark.ml.util import keyword_only
from pyspark.ml.wrapper import JavaWrapper
Expand Down Expand Up @@ -655,6 +655,42 @@ def test_nested_pipeline_persistence(self):
except OSError:
pass

def test_decisiontree_classifier(self):
dt = DecisionTreeClassifier(maxDepth=1)
path = tempfile.mkdtemp()
dtc_path = path + "/dtc"
dt.save(dtc_path)
dt2 = DecisionTreeClassifier.load(dtc_path)
self.assertEqual(dt2.uid, dt2.maxDepth.parent,
"Loaded DecisionTreeClassifier instance uid (%s) "
"did not match Param's uid (%s)"
% (dt2.uid, dt2.maxDepth.parent))
self.assertEqual(dt._defaultParamMap[dt.maxDepth], dt2._defaultParamMap[dt2.maxDepth],
"Loaded DecisionTreeClassifier instance default params did not match " +
"original defaults")
try:
rmtree(path)
except OSError:
pass

def test_decisiontree_regressor(self):
dt = DecisionTreeRegressor(maxDepth=1)
path = tempfile.mkdtemp()
dtr_path = path + "/dtr"
dt.save(dtr_path)
dt2 = DecisionTreeClassifier.load(dtr_path)
self.assertEqual(dt2.uid, dt2.maxDepth.parent,
"Loaded DecisionTreeRegressor instance uid (%s) "
"did not match Param's uid (%s)"
% (dt2.uid, dt2.maxDepth.parent))
self.assertEqual(dt._defaultParamMap[dt.maxDepth], dt2._defaultParamMap[dt2.maxDepth],
"Loaded DecisionTreeRegressor instance default params did not match " +
"original defaults")
try:
rmtree(path)
except OSError:
pass


class HasThrowableProperty(Params):

Expand Down