Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/ml-features.md
Original file line number Diff line number Diff line change
Expand Up @@ -1232,7 +1232,7 @@ lInfNormData = normalizer.transform(dataFrame, {normalizer.p: float("inf")})
* `withStd`: True by default. Scales the data to unit standard deviation.
* `withMean`: False by default. Centers the data with mean before scaling. It will build a dense output, so this does not work on sparse input and will raise an exception.

`StandardScaler` is a `Model` which can be `fit` on a dataset to produce a `StandardScalerModel`; this amounts to computing summary statistics. The model can then transform a `Vector` column in a dataset to have unit standard deviation and/or zero mean features.
`StandardScaler` is an `Estimator` which can be `fit` on a dataset to produce a `StandardScalerModel`; this amounts to computing summary statistics. The model can then transform a `Vector` column in a dataset to have unit standard deviation and/or zero mean features.

Note that if the standard deviation of a feature is zero, it will return default `0.0` value in the `Vector` for that feature.

Expand Down