@@ -699,7 +699,8 @@ def approxNearestNeighbors(self, dataset, key, numNearestNeighbors, singleProbin
699699
700700 * Single Probing: Fast, return at most k elements (Probing only one buckets)
701701
702- * Multiple Probing: Slow, return exact k elements (Probing multiple buckets close to the key)
702+ * Multiple Probing: Slow, return exact k elements (Probing multiple buckets close to \
703+ the key)
703704
704705 :param dataset: The dataset to search for nearest neighbors of the key.
705706 :param key: Feature vector representing the item to search for.
@@ -824,8 +825,8 @@ class MinHash(JavaEstimator, LSHParams, HasInputCol, HasOutputCol, HasSeed,
824825 The input can be dense or sparse vectors, but it is more efficient if it is sparse.
825826 For example, `Vectors.sparse(10, Array[(2, 1.0), (3, 1.0), (5, 1.0)])`
826827 means there are 10 elements in the space. This set contains elem 2, elem 3 and elem 5.
827- Also, any input vector must have at least 1 non-zero indices, and all non-zero values are treated
828- as binary "1" values.
828+ Also, any input vector must have at least 1 non-zero indices, and all non-zero values
829+ are treated as binary "1" values.
829830
830831 .. seealso:: `MinHash <https://en.wikipedia.org/wiki/MinHash>`_
831832
@@ -1459,7 +1460,8 @@ class RandomProjection(JavaEstimator, LSHParams, HasInputCol, HasOutputCol, HasS
14591460 distance space. The output will be vectors of configurable dimension. Hash value in the
14601461 same dimension is calculated by the same hash function.
14611462
1462- .. seealso:: `Stable Distributions <https://en.wikipedia.org/wiki/Locality-sensitive_hashing#Stable_distributions>`_
1463+ .. seealso:: `Stable Distributions \
1464+ <https://en.wikipedia.org/wiki/Locality-sensitive_hashing#Stable_distributions>`_
14631465 .. seealso:: `Hashing for Similarity Search: A Survey <https://arxiv.org/abs/1408.2927>`_
14641466
14651467 >>> from pyspark.ml.linalg import Vectors
0 commit comments