@@ -39,9 +39,9 @@ private[ml] trait LSHParams extends HasInputCol with HasOutputCol {
3939 * higher the dimension is, the lower the false negative rate.
4040 * @group param
4141 */
42- final val outputDim : IntParam = new IntParam (this , " outputDim" , " output dimension, where" +
43- " increasing dimensionality lowers the false negative rate, and decreasing dimensionality" +
44- " improves the running performance" , ParamValidators .gt(0 ))
42+ final val outputDim : IntParam = new IntParam (this , " outputDim" , " The output dimension, where" +
43+ " increasing dimensionality lowers the false negative rate, and decreasing dimensionality" +
44+ " improves the running performance. " , ParamValidators .gt(0 ))
4545
4646 /** @group getParam */
4747 final def getOutputDim : Int = $(outputDim)
@@ -109,11 +109,11 @@ private[ml] abstract class LSHModel[T <: LSHModel[T]]
109109 * - Single Probing: Fast, return at most k elements (Probing only one buckets)
110110 * - Multiple Probing: Slow, return exact k elements (Probing multiple buckets close to the key)
111111 *
112- * @param dataset the dataset to search for nearest neighbors of the key
113- * @param key Feature vector representing the item to search for
114- * @param numNearestNeighbors The maximum number of nearest neighbors
115- * @param singleProbing True for using Single Probing; false for multiple probing
116- * @param distCol Output column for storing the distance between each result row and the key
112+ * @param dataset The dataset to search for nearest neighbors of the key.
113+ * @param key Feature vector representing the item to search for.
114+ * @param numNearestNeighbors The maximum number of nearest neighbors.
115+ * @param singleProbing True for using Single Probing; false for multiple probing.
116+ * @param distCol Output column for storing the distance between each result row and the key.
117117 * @return A dataset containing at most k items closest to the key. A distCol is added to show
118118 * the distance between each row and the key.
119119 */
@@ -215,12 +215,12 @@ private[ml] abstract class LSHModel[T <: LSHModel[T]]
215215 * [[outputCol ]] exists, it will use the [[outputCol ]]. This allows caching of the transformed
216216 * data when necessary.
217217 *
218- * @param datasetA One of the datasets to join
219- * @param datasetB Another dataset to join
220- * @param threshold The threshold for the distance of row pairs
221- * @param distCol Output column for storing the distance between each result row and the key
218+ * @param datasetA One of the datasets to join.
219+ * @param datasetB Another dataset to join.
220+ * @param threshold The threshold for the distance of row pairs.
221+ * @param distCol Output column for storing the distance between each result row and the key.
222222 * @return A joined dataset containing pairs of rows. The original rows are in columns
223- * "datasetA" and "datasetB", and a distCol is added to show the distance of each pair
223+ * "datasetA" and "datasetB", and a distCol is added to show the distance of each pair.
224224 */
225225 def approxSimilarityJoin (
226226 datasetA : Dataset [_],
0 commit comments