Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/extensions/engines/spark/rules.md
Original file line number Diff line number Diff line change
Expand Up @@ -83,4 +83,6 @@ Kyuubi provides some configs to make these feature easy to use.
| spark.sql.optimizer.inferRebalanceAndSortOrdersMaxColumns | 3 | The max columns of inferred columns. | 1.7.0 |
| spark.sql.optimizer.insertRepartitionBeforeWriteIfNoShuffle.enabled | false | When true, add repartition even if the original plan does not have shuffle. | 1.7.0 |
| spark.sql.optimizer.finalStageConfigIsolationWriteOnly.enabled | true | When true, only enable final stage isolation for writing. | 1.7.0 |
| spark.sql.finalWriteStage.eagerlyKillExecutors.enabled | false | When true, eagerly kill redundant executors before running final write stage. | 1.8.0 |
| spark.sql.finalWriteStage.retainExecutorsFactor | 1.2 | If the target executors * factor < active executors, and target executors * factor > min executors, then inject kill executors or inject custom resource profile. | 1.8.0 |

Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@

package org.apache.kyuubi.sql

import org.apache.spark.FinalStageResourceManager
import org.apache.spark.sql.SparkSessionExtensions

import org.apache.kyuubi.sql.watchdog.{ForcedMaxOutputRowsRule, MaxPartitionStrategy}
Expand All @@ -39,5 +40,7 @@ class KyuubiSparkSQLExtension extends (SparkSessionExtensions => Unit) {
// watchdog extension
extensions.injectOptimizerRule(ForcedMaxOutputRowsRule)
extensions.injectPlannerStrategy(MaxPartitionStrategy)

extensions.injectQueryStagePrepRule(FinalStageResourceManager)
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,204 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this is for unstable calls?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yes, e.g., CoarseGrainedSchedulerBackend is under private[spark]


import scala.annotation.tailrec
import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer

import org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.execution.{FilterExec, ProjectExec, SortExec, SparkPlan}
import org.apache.spark.sql.execution.adaptive._
import org.apache.spark.sql.execution.exchange.{ENSURE_REQUIREMENTS, ShuffleExchangeExec}

import org.apache.kyuubi.sql.{KyuubiSQLConf, MarkNumOutputColumnsRule}

/**
* This rule assumes the final write stage has less cores requirement than previous, otherwise
* this rule would take no effect.
*
* It provide a feature:
* 1. Kill redundant executors before running final write stage
*/
case class FinalStageResourceManager(session: SparkSession) extends Rule[SparkPlan] {
override def apply(plan: SparkPlan): SparkPlan = {
if (!conf.getConf(KyuubiSQLConf.FINAL_WRITE_STAGE_EAGERLY_KILL_EXECUTORS_ENABLED)) {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

dynamicAllocation enabled?

return plan
}

if (!MarkNumOutputColumnsRule.isWrite(session, plan)) {
return plan
}

val sc = session.sparkContext
val dra = sc.getConf.getBoolean("spark.dynamicAllocation.enabled", false)
val coresPerExecutor = sc.getConf.getInt("spark.executor.cores", 1)
val minExecutors = sc.getConf.getInt("spark.dynamicAllocation.minExecutors", 0)
val maxExecutors = sc.getConf.getInt("spark.dynamicAllocation.maxExecutors", Int.MaxValue)
val factor = conf.getConf(KyuubiSQLConf.FINAL_WRITE_STAGE_PARTITION_FACTOR)
val hasImprovementRoom = maxExecutors - 1 > minExecutors * factor
// Fast fail if:
// 1. DRA off
// 2. only work with yarn and k8s
// 3. maxExecutors is not bigger than minExecutors * factor
if (!dra || !sc.schedulerBackend.isInstanceOf[CoarseGrainedSchedulerBackend] ||
!hasImprovementRoom) {
return plan
}

val stage = findFinalRebalanceStage(plan)
if (stage.isEmpty) {
return plan
}

// Since we are in `prepareQueryStage`, the AQE shuffle read has not been applied.
// So we need to apply it by self.
val shuffleRead = queryStageOptimizerRules.foldLeft(stage.get.asInstanceOf[SparkPlan]) {
case (latest, rule) => rule.apply(latest)
}
shuffleRead match {
case AQEShuffleReadExec(stage: ShuffleQueryStageExec, partitionSpecs) =>
// The condition whether inject custom resource profile:
// - target executors < active executors
// - target executors > min executors
val numActiveExecutors = sc.getExecutorIds().length
val targetCores = partitionSpecs.length
val targetExecutors = (math.ceil(targetCores.toFloat / coresPerExecutor) * factor).toInt
.max(1)
val hasBenefits = targetExecutors < numActiveExecutors && targetExecutors > minExecutors
if (hasBenefits) {
val shuffleId = stage.plan.asInstanceOf[ShuffleExchangeExec].shuffleDependency.shuffleId
val numReduce = stage.plan.asInstanceOf[ShuffleExchangeExec].numPartitions
// Now, there is only a final rebalance stage waiting to execute and all tasks of previous
// stage are finished. Kill redundant existed executors eagerly so the tasks of final
// stage can be centralized scheduled.
killExecutors(sc, targetExecutors, shuffleId, numReduce)
} else {
logInfo(s"Has no benefits to kill executors or inject custom resource profile, " +
s"active executors: $numActiveExecutors, min executor: $minExecutors, " +
s"target executors: $targetExecutors.")
}

case _ =>
}

plan
}

/**
* The priority of kill executors follow:
* 1. kill executor who is younger than other (The older the JIT works better)
* 2. kill executor who produces less shuffle data first
*/
private def findExecutorToKill(
sc: SparkContext,
targetExecutors: Int,
shuffleId: Int,
numReduce: Int): Seq[String] = {
val tracker = SparkEnv.get.mapOutputTracker.asInstanceOf[MapOutputTrackerMaster]
val shuffleStatus = tracker.shuffleStatuses(shuffleId)
val executorToBlockSize = new mutable.HashMap[String, Long]
shuffleStatus.withMapStatuses { mapStatus =>
mapStatus.foreach { status =>
var i = 0
var sum = 0L
while (i < numReduce) {
sum += status.getSizeForBlock(i)
i += 1
}
executorToBlockSize.getOrElseUpdate(status.location.executorId, sum)
}
}

val backend = sc.schedulerBackend.asInstanceOf[CoarseGrainedSchedulerBackend]
val executorsWithRegistrationTs = backend.getExecutorsWithRegistrationTs()
val existedExecutors = executorsWithRegistrationTs.keys.toSet
val expectedNumExecutorToKill = existedExecutors.size - targetExecutors
if (expectedNumExecutorToKill < 1) {
return Seq.empty
}

val executorIdsToKill = new ArrayBuffer[String]()
// We first kill executor who does not hold shuffle block. It would happen because
// the last stage is running fast and finished in a short time. The existed executors are
// from previous stages that have not been killed by DRA, so we can not find it by tracking
// shuffle status.
// We should evict executors by their alive time first and retain all of executors which
// have better locality for shuffle block.
val numExecutorToKillWithNoShuffle = expectedNumExecutorToKill - executorToBlockSize.size
executorsWithRegistrationTs.toSeq.sortBy(_._2).foreach { case (id, _) =>
if (executorIdsToKill.length < numExecutorToKillWithNoShuffle &&
!executorToBlockSize.contains(id)) {
executorIdsToKill.append(id)
}
}

// Evict the rest executors according to the shuffle block size
executorToBlockSize.toSeq.sortBy(_._2).foreach { case (id, _) =>
if (executorIdsToKill.length < expectedNumExecutorToKill) {
executorIdsToKill.append(id)
}
}

executorIdsToKill.toSeq
}

private def killExecutors(
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

org.apache.spark.SparkContext#killExecutors?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There is a story about DRA. Since apache/spark#20604, org.apache.spark.SparkContext#killExecutors does not allow with DRA ON, so this pr hack the internal interface to kill executors. I think that pr is not very reaonable, it should be ok to kill executors with DRA ON if the min executor is less than the target executor.

sc: SparkContext,
targetExecutors: Int,
shuffleId: Int,
numReduce: Int): Unit = {
val executorAllocationClient = sc.schedulerBackend.asInstanceOf[ExecutorAllocationClient]

val executorsToKill = findExecutorToKill(sc, targetExecutors, shuffleId, numReduce)
logInfo(s"Request to kill executors, total count ${executorsToKill.size}, " +
s"[${executorsToKill.mkString(", ")}].")

// Note, `SparkContext#killExecutors` does not allow with ARD enabled,
// see `https://github.com/apache/spark/pull/20604`.
// It may cause the status in `ExecutorAllocationManager` inconsistent with
// `CoarseGrainedSchedulerBackend` for a while. But it should be synchronous finally.
executorAllocationClient.killExecutors(
executorIds = executorsToKill,
adjustTargetNumExecutors = false,
countFailures = false,
force = false)
}

@tailrec
private def findFinalRebalanceStage(plan: SparkPlan): Option[ShuffleQueryStageExec] = {
plan match {
case p: ProjectExec => findFinalRebalanceStage(p.child)
case f: FilterExec => findFinalRebalanceStage(f.child)
case s: SortExec if !s.global => findFinalRebalanceStage(s.child)
case stage: ShuffleQueryStageExec
if stage.isMaterialized &&
stage.plan.isInstanceOf[ShuffleExchangeExec] &&
stage.plan.asInstanceOf[ShuffleExchangeExec].shuffleOrigin != ENSURE_REQUIREMENTS =>
Some(stage)
case _ => None
}
}

@transient private val queryStageOptimizerRules: Seq[Rule[SparkPlan]] = Seq(
OptimizeSkewInRebalancePartitions,
CoalesceShufflePartitions(session),
OptimizeShuffleWithLocalRead)
}
Original file line number Diff line number Diff line change
Expand Up @@ -190,4 +190,20 @@ object KyuubiSQLConf {
.version("1.7.0")
.booleanConf
.createWithDefault(true)

val FINAL_WRITE_STAGE_EAGERLY_KILL_EXECUTORS_ENABLED =
buildConf("spark.sql.finalWriteStage.eagerlyKillExecutors.enabled")
.doc("When true, eagerly kill redundant executors before running final write stage.")
.version("1.8.0")
.booleanConf
.createWithDefault(false)

val FINAL_WRITE_STAGE_PARTITION_FACTOR =
buildConf("spark.sql.finalWriteStage.retainExecutorsFactor")
.doc("If the target executors * factor < active executors, and " +
"target executors * factor > min executors, then kill redundant executors.")
.version("1.8.0")
.doubleConf
.checkValue(_ >= 1, "must be bigger than or equal to 1")
.createWithDefault(1.2)
}