Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 12 additions & 1 deletion tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -2502,9 +2502,13 @@ def spark() -> "SparkSession":
spark_version = ".".join(importlib.metadata.version("pyspark").split(".")[:2])
scala_version = "2.12"
iceberg_version = "1.9.2"
hadoop_version = "3.3.4"
aws_sdk_version = "1.12.753"

os.environ["PYSPARK_SUBMIT_ARGS"] = (
f"--packages org.apache.iceberg:iceberg-spark-runtime-{spark_version}_{scala_version}:{iceberg_version},"
f"org.apache.hadoop:hadoop-aws:{hadoop_version},"
f"com.amazonaws:aws-java-sdk-bundle:{aws_sdk_version},"
f"org.apache.iceberg:iceberg-aws-bundle:{iceberg_version} pyspark-shell"
)
os.environ["AWS_REGION"] = "us-east-1"
Expand All @@ -2526,14 +2530,21 @@ def spark() -> "SparkSession":
.config("spark.sql.catalog.integration.warehouse", "s3://warehouse/wh/")
.config("spark.sql.catalog.integration.s3.endpoint", "http://localhost:9000")
.config("spark.sql.catalog.integration.s3.path-style-access", "true")
.config("spark.sql.defaultCatalog", "integration")
.config("spark.sql.catalog.hive", "org.apache.iceberg.spark.SparkCatalog")
.config("spark.sql.catalog.hive.type", "hive")
.config("spark.sql.catalog.hive.uri", "http://localhost:9083")
.config("spark.sql.catalog.hive.io-impl", "org.apache.iceberg.aws.s3.S3FileIO")
.config("spark.sql.catalog.hive.warehouse", "s3://warehouse/hive/")
.config("spark.sql.catalog.hive.s3.endpoint", "http://localhost:9000")
.config("spark.sql.catalog.hive.s3.path-style-access", "true")
.config("spark.sql.catalog.spark_catalog", "org.apache.iceberg.spark.SparkSessionCatalog")
.config("spark.sql.catalog.spark_catalog.type", "hive")
.config("spark.sql.catalog.spark_catalog.uri", "http://localhost:9083")
.config("spark.sql.catalog.spark_catalog.warehouse", "s3://warehouse/hive/")
.config("spark.hadoop.fs.s3a.endpoint", "http://localhost:9000")
.config("spark.hadoop.fs.s3a.path.style.access", "true")
.config("spark.sql.catalogImplementation", "hive")
.config("spark.sql.defaultCatalog", "integration")
.config("spark.sql.execution.arrow.pyspark.enabled", "true")
.getOrCreate()
)
Expand Down
86 changes: 86 additions & 0 deletions tests/integration/test_hive_migration.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import time

import pytest
from pyspark.sql import SparkSession

from pyiceberg.catalog import Catalog


@pytest.mark.integration
def test_migrate_table(
session_catalog_hive: Catalog,
spark: SparkSession,
) -> None:
"""
Imported tables are an edge case since the partition column is not stored
in the Parquet files:

test_migrate_table_hive_1754486926/dt=2022-01-01/part-00000-30a9798b-7597-4027-86d9-79d7c529bc87.c000.snappy.parquet
{
"type" : "record",
"name" : "spark_schema",
"fields" : [ {
"name" : "number",
"type" : "int"
} ]
}

PyIceberg will project this column when the table is being read
"""
# Create new tables to avoid complex cleanup
src_table_identifier = f"spark_catalog.default.test_migrate_table_hive_{int(time.time())}"
dst_table_identifier = f"default.test_migrate_table_{int(time.time())}"

spark.sql(f"""
CREATE TABLE {src_table_identifier} (
number INTEGER
)
PARTITIONED BY (dt date)
STORED AS parquet
""")

spark.sql(f"""
INSERT OVERWRITE TABLE {src_table_identifier}
PARTITION (dt='2022-01-01')
VALUES (1), (2), (3)
""")

spark.sql(f"""
INSERT OVERWRITE TABLE {src_table_identifier}
PARTITION (dt='2023-01-01')
VALUES (4), (5), (6)
""")

# Docs: https://iceberg.apache.org/docs/latest/hive-migration/#snapshot-hive-table-to-iceberg
spark.sql(f"""
CALL hive.system.snapshot('{src_table_identifier}', 'hive.{dst_table_identifier}')
""")

tbl = session_catalog_hive.load_table(dst_table_identifier)
assert tbl.schema().column_names == ["number", "dt"]

# TODO: Returns the primitive type (int), rather than the logical type
# assert set(tbl.scan().to_arrow().column(1).combine_chunks().tolist()) == {'2022-01-01', '2023-01-01'}

assert tbl.scan(row_filter="number > 3").to_arrow().column(0).combine_chunks().tolist() == [4, 5, 6]

assert tbl.scan(row_filter="dt == '2023-01-01'").to_arrow().column(0).combine_chunks().tolist() == [4, 5, 6]

# TODO: Issue with filtering the projected column
# assert tbl.scan(row_filter="dt == '2022-01-01'").to_arrow().column(0).combine_chunks().tolist() == [1, 2, 3]