-
Notifications
You must be signed in to change notification settings - Fork 117
Spark shell [WIP] #211
Spark shell [WIP] #211
Conversation
|
I wonder if it would lead to confusion: spark repl is used with "client" deploy mode with all other cluster managers, while here we use it with "cluster" deploy mode. IMHO it's better to follow the convention. Anyway, I think this patch is exciting! |
| val fileBase64 = Base64.encodeBase64String(fileBytes) | ||
| UploadedAppResource(resourceBase64Contents = fileBase64, name = appFile.getName) | ||
| case "local" => ContainerAppResource(mainAppResource) | ||
| case "nop" => NopAppResource() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
this nop resource I think is the same concept as Spark already has in SparkLauncher#NO_RESOURCE
Seems like this bit of your PR could be slightly modified to address #213 ?
|
I agree with @lins05 that the strong expectation for Spark users running spark-shell is that the driver is running locally to their laptop and they'll be able to access local files on their laptop through the shell, e.g. with There are still situations where it's useful to have the shell running in cluster mode like this via the attach though (e.g. data is stored in a file/object store of some sort rather than on local disk) though. Getting shell working seamlessly would be a big win for spark on k8s for sure. |
…nd.stop ## What changes were proposed in this pull request? `o.a.s.streaming.StreamingContextSuite.SPARK-18560 Receiver data should be deserialized properly` is flaky is because there is a potential dead-lock in StandaloneSchedulerBackend which causes `await` timeout. Here is the related stack trace: ``` "Thread-31" #211 daemon prio=5 os_prio=31 tid=0x00007fedd4808000 nid=0x16403 waiting on condition [0x00007000239b7000] java.lang.Thread.State: TIMED_WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for <0x000000079b49ca10> (a scala.concurrent.impl.Promise$CompletionLatch) at java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:215) at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedNanos(AbstractQueuedSynchronizer.java:1037) at java.util.concurrent.locks.AbstractQueuedSynchronizer.tryAcquireSharedNanos(AbstractQueuedSynchronizer.java:1328) at scala.concurrent.impl.Promise$DefaultPromise.tryAwait(Promise.scala:208) at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:218) at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223) at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:201) at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:75) at org.apache.spark.rpc.RpcEndpointRef.askSync(RpcEndpointRef.scala:92) at org.apache.spark.rpc.RpcEndpointRef.askSync(RpcEndpointRef.scala:76) at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.stop(CoarseGrainedSchedulerBackend.scala:402) at org.apache.spark.scheduler.cluster.StandaloneSchedulerBackend.org$apache$spark$scheduler$cluster$StandaloneSchedulerBackend$$stop(StandaloneSchedulerBackend.scala:213) - locked <0x00000007066fca38> (a org.apache.spark.scheduler.cluster.StandaloneSchedulerBackend) at org.apache.spark.scheduler.cluster.StandaloneSchedulerBackend.stop(StandaloneSchedulerBackend.scala:116) - locked <0x00000007066fca38> (a org.apache.spark.scheduler.cluster.StandaloneSchedulerBackend) at org.apache.spark.scheduler.TaskSchedulerImpl.stop(TaskSchedulerImpl.scala:517) at org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:1657) at org.apache.spark.SparkContext$$anonfun$stop$8.apply$mcV$sp(SparkContext.scala:1921) at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1302) at org.apache.spark.SparkContext.stop(SparkContext.scala:1920) at org.apache.spark.streaming.StreamingContext.stop(StreamingContext.scala:708) at org.apache.spark.streaming.StreamingContextSuite$$anonfun$43$$anonfun$apply$mcV$sp$66$$anon$3.run(StreamingContextSuite.scala:827) "dispatcher-event-loop-3" #18 daemon prio=5 os_prio=31 tid=0x00007fedd603a000 nid=0x6203 waiting for monitor entry [0x0000700003be4000] java.lang.Thread.State: BLOCKED (on object monitor) at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend$DriverEndpoint.org$apache$spark$scheduler$cluster$CoarseGrainedSchedulerBackend$DriverEndpoint$$makeOffers(CoarseGrainedSchedulerBackend.scala:253) - waiting to lock <0x00000007066fca38> (a org.apache.spark.scheduler.cluster.StandaloneSchedulerBackend) at org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend$DriverEndpoint$$anonfun$receive$1.applyOrElse(CoarseGrainedSchedulerBackend.scala:124) at org.apache.spark.rpc.netty.Inbox$$anonfun$process$1.apply$mcV$sp(Inbox.scala:117) at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:205) at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:101) at org.apache.spark.rpc.netty.Dispatcher$MessageLoop.run(Dispatcher.scala:213) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) ``` This PR removes `synchronized` and changes `stopping` to AtomicBoolean to ensure idempotent to fix the dead-lock. ## How was this patch tested? Jenkins Author: Shixiong Zhu <[email protected]> Closes apache#17610 from zsxwing/SPARK-20131.
With these changes, Spark shell "almost" works.
A
kubectl attachto the driver pod shows:I think a separate process actually forks off for spark-shell which is why the rest submission driver immediately stops and marks the driver as succeeded. To detect when the driver can stop running, we probably need to watch for subprocesses to exit as well.