Implementation for Normed Spaces for Graph Embeddings
Euclidean-l1,Euclidean-l2,Euclidean-linfPoincare,Lorentz,Sphere,Pseudo-EuclideanPoincare x Euclidean-l1,Poincare x Euclidean-l2,Poincare x Euclidean-linf,Euclidean-l1 x Euclidean-linfUpper-riem,Upper-f1,Upper-finf,Bounded-riem,Bounded-f1,Bounded-finfSPD
Below are the instructions about running experiments in the l1 and linf normed spaces.
python run_dis.py --model euclidean --metric l1 --dims 20 --learning_rate 0.01 --batch_size 2048 --epoch 3000 --graph grid
python run_dis.py --model euclidean --metric linf --dims 20 --learning_rate 0.01 --batch_size 2048 --epoch 3000 --graph tree
python run_dis.py --model prod-eueu --metric l1,linf --dims 20 --learning_rate 0.01 --batch_size 2048 --epoch 3000 --graph tree
python run_dis.py --model pesudo-eueu --metric l2,l2 --dims 20 --learning_rate 0.01 --batch_size 2048 --epoch 3000 --graph grid
python run_lp_gnn.py --dims 64 --graph cora --model euclidean --metric l1 --gnn gcn --learning_rate 0.01 --batch_size -1 --epoch 1000
python run_lp_gnn.py --dims 64 --graph cora --model prod-eueu --metric l1,linf --gnn gcn --learning_rate 0.01 --batch_size -1 --epoch 1000
python run.py --dims 20 --model prod-hyeu --metric l1 --loss hinge --graph lastfm --learning_rate 5e-2 --batch_size 1024 --epoch 500 --val_every 30 --max_grad_norm 10
python run.py --dims 20 --model euclidean --metric l1 --loss bce --graph mupnyc --learning_rate 5e-2 --batch_size 512 --epoch 500 --val_every 30 --max_grad_norm 5
python visual.py --model euclidean --metric linf --dims 20 --graph grid
GridTreeTreexTreeTree o GridGrid o TreeFullerenesMargulisPaleyChordalUSCA312BiseasomeCSPHDEuroRoadFacebookML-100kLastFMMeetUp-NYCCoraCiteseer
- Python == 3.8
- scikit-learn == 1.0.1
- torch == 1.12.1
- torch-geometric == 2.1.0
- geoopt == 0.5.0
- networkit == 10.0
- networkx == 2.6.3