Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ for (let i = 0; i < n; i++) {

| task | model |
| ---- | ----- |
| clustering | (Soft / Kernel / Genetic / Weighted / Bisecting) k-means, k-means++, k-medois, k-medians, x-means, G-means, LBG, ISODATA, Fuzzy c-means, Possibilistic c-means, k-harmonic means, MacQueen, Hartigan-Wong, Elkan, Hamelry, Drake, Yinyang, Agglomerative (complete linkage, single linkage, group average, Ward's, centroid, weighted average, median), DIANA, Monothetic, Mutual kNN, Mean shift, DBSCAN, OPTICS, DTSCAN, HDBSCAN, DENCLUE, DBCLASD, BRIDGE, CLUES, PAM, CLARA, CLARANS, BIRCH, CURE, ROCK, C2P, PLSA, Latent dirichlet allocation, GMM, VBGMM, Affinity propagation, Spectral clustering, Mountain, (Growing) SOM, GTM, (Growing) Neural gas, Growing cell structures, LVQ, ART, SVC, CAST, CHAMELEON, COLL, CLIQUE, PROCLUS, ORCLUS, FINDIT, DOC, FastDOC, DiSH, LMCLUS, NMF, Autoencoder |
| clustering | (Soft / Kernel / Genetic / Weighted / Bisecting) k-means, k-means++, k-medois, k-medians, x-means, G-means, LBG, ISODATA, Fuzzy c-means, Possibilistic c-means, k-harmonic means, MacQueen, Hartigan-Wong, Elkan, Hamelry, Drake, Yinyang, Agglomerative (complete linkage, single linkage, group average, Ward's, centroid, weighted average, median), DIANA, Monothetic, Mutual kNN, Mean shift, DBSCAN, OPTICS, DTSCAN, HDBSCAN, DENCLUE, DBCLASD, BRIDGE, CLUES, PAM, CLARA, CLARANS, BIRCH, CURE, ROCK, C2P, STING, PLSA, Latent dirichlet allocation, GMM, VBGMM, Affinity propagation, Spectral clustering, Mountain, (Growing) SOM, GTM, (Growing) Neural gas, Growing cell structures, LVQ, ART, SVC, CAST, CHAMELEON, COLL, CLIQUE, PROCLUS, ORCLUS, FINDIT, DOC, FastDOC, DiSH, LMCLUS, NMF, Autoencoder |
| classification | (Fisher's) Linear discriminant, Quadratic discriminant, Mixture discriminant, Least squares, (Multiclass / Kernel) Ridge, (Complement / Negation / Universal-set / Selective) Naive Bayes (gaussian), AODE, (Fuzzy / Weighted) k-nearest neighbor, Radius neighbor, Nearest centroid, ENN, ENaN, NNBCA, ADAMENN, DANN, IKNN, Decision tree, Random forest, Extra trees, GBDT, XGBoost, ALMA, (Aggressive) ROMMA, (Bounded) Online gradient descent, (Budgeted online) Passive aggressive, RLS, (Selective-sampling) Second order perceptron, AROW, NAROW, Confidence weighted, CELLIP, IELLIP, Normal herd, Stoptron, (Kernelized) Pegasos, MIRA, Forgetron, Projectron, Projectron++, Banditron, Ballseptron, (Multiclass) BSGD, ILK, SILK, (Multinomial) Logistic regression, (Multinomial) Probit, SVM, Gaussian process, HMM, CRF, Bayesian Network, LVQ, (Average / Multiclass / Voted / Kernelized / Selective-sampling / Margin / Shifting / Budget / Tighter / Tightest) Perceptron, PAUM, RBP, ADALINE, MADALINE, MLP, ELM, LMNN |
| semi-supervised classification | k-nearest neighbor, Radius neighbor, Label propagation, Label spreading, k-means, GMM, S3VM, Ladder network |
| regression | Least squares, Ridge, Lasso, Elastic net, RLS, Bayesian linear, Poisson, Least absolute deviations, Huber, Tukey, Least trimmed squares, Least median squares, Lp norm linear, SMA, Deming, Segmented, LOWESS, LOESS, spline, Naive Bayes, Gaussian process, Principal components, Partial least squares, Projection pursuit, Quantile regression, k-nearest neighbor, Radius neighbor, IDW, Nadaraya Watson, Priestley Chao, Gasser Muller, RBF Network, RVM, Decision tree, Random forest, Extra trees, GBDT, XGBoost, SVR, MARS, MLP, ELM, GMR, Isotonic, Ramer Douglas Peucker, Theil-Sen, Passing-Bablok, Repeated median |
Expand Down
2 changes: 1 addition & 1 deletion js/model_selector.js
Original file line number Diff line number Diff line change
Expand Up @@ -146,7 +146,7 @@ const AIMethods = [
'': [
{ value: 'mutual_knn', title: 'Mutual kNN' },
{ value: 'art', title: 'Adaptive resonance theory' },
//{ value: "sting", title: "STING" },
{ value: 'sting', title: 'STING' },
{ value: 'svc', title: 'Support vector clustering' },
{ value: 'affinity_propagation', title: 'Affinity Propagation' },
{ value: 'cast', title: 'CAST' },
Expand Down
13 changes: 8 additions & 5 deletions js/view/sting.js
Original file line number Diff line number Diff line change
Expand Up @@ -10,13 +10,16 @@ export default function (platform) {
}
const controller = new Controller(platform)
const fitModel = () => {
const model = new STING()
const model = new STING(c.value)
model.fit(platform.trainInput)
//const pred = model.predict(platform.trainInput);
//platform.trainResult = pred.map(v => v + 1)
//clusters.value = new Set(pred).size
const pred = model.predict(platform.trainInput)
platform.trainResult = pred.map(v => v + 1)
clusters.value = new Set(pred.filter(v => v >= 0)).size
const tilePred = model.predict(platform.testInput(4))
platform.testResult(tilePred.map(v => (v < 0 ? -1 : v + 1)))
}

const stepButton = controller.input.button('Fit').on('click', fitModel)
const c = controller.input.number({ label: 'c', min: 0, max: 10000, value: 500 })
controller.input.button('Fit').on('click', fitModel)
const clusters = controller.text({ label: ' Clusters: ' })
}
168 changes: 137 additions & 31 deletions lib/model/sting.js
Original file line number Diff line number Diff line change
@@ -1,12 +1,16 @@
/**
* STatistical INformation Grid-based method
* @deprecated Not implemented
*/
export default class STING {
// https://en.wikipedia.org/wiki/Cluster_analysis
// "STING : A Statistical Information Grid Approach to Spatial Data Mining"
constructor() {
/**
* @param {number} c specified density
*/
constructor(c) {
this._c = c
this._cells = null
this._t = 0.05
}

/**
Expand All @@ -24,14 +28,14 @@ export default class STING {
ranges: ranges,
children: [],
}
let stack = [this._cells]
let layer = [this._cells]
const spl_size = 2 ** dim
const average_number = 20
const average_number = 5
const max_depth = Math.log(n / average_number) / Math.log(spl_size)
const cells = [stack]
const cells = [layer]
for (let a = 0; a < max_depth; a++) {
const new_stack = []
for (const c of stack) {
for (const c of layer) {
const rng = c.ranges
for (let i = 0; i < spl_size; i++) {
let p = i
Expand All @@ -53,53 +57,141 @@ export default class STING {
c.children.push(t)
}
}
stack = new_stack
cells.push(stack)
layer = new_stack
cells.push(layer)
}

let bottomSpace = 1
for (let d = 0; d < dim; d++) {
const range = layer[0].ranges[d]
bottomSpace *= range[1] - range[0]
}
for (let i = 0; i < stack.length; i++) {
const c = stack[i]
for (let i = 0; i < layer.length; i++) {
const c = layer[i]
const d = x.filter(v => {
return c.ranges.every((r, i) => r[0] <= v[i] && (r[1] === maxs[i] ? v[i] <= r[1] : v[i] < r[1]))
})
const n = (c.n = d.length)
const m = Array(dim).fill(0)
const min = (c.min = Array(dim).fill(Infinity))
const max = (c.max = Array(dim).fill(-Infinity))
for (let j = 0; j < n; j++) {
c.n = d.length
c.min = Array(dim).fill(Infinity)
c.max = Array(dim).fill(-Infinity)
const sum = Array(dim).fill(0)
for (let j = 0; j < c.n; j++) {
for (let k = 0; k < dim; k++) {
m[k] += d[j][k]
min[k] = Math.min(min[k], d[j][k])
max[k] = Math.max(max[k], d[j][k])
sum[k] += d[j][k]
c.min[k] = Math.min(c.min[k], d[j][k])
c.max[k] = Math.max(c.max[k], d[j][k])
}
}
c.m = m.map(v => (n > 0 ? v / n : 0))
c.m = sum.map(v => (c.n > 0 ? v / c.n : 0))
const s = Array(dim).fill(0)
for (let j = 0; j < n; j++) {
for (let j = 0; j < c.n; j++) {
for (let k = 0; k < dim; k++) {
s[k] += (d[j][k] - m[k]) ** 2
s[k] += (d[j][k] - c.m[k]) ** 2
}
}
c.s = s.map(v => (n > 0 ? Math.sqrt(v / n) : 0))
c.s = s.map(v => (c.n > 0 ? Math.sqrt(v / c.n) : 0))
c.dist = Array(dim).fill('normal')

c.area = bottomSpace
}
for (let k = cells.length - 2; k >= 0; k--) {
for (let i = 0; i < cells[k].length; i++) {
let n = 0
const m = Array(dim).fill(0)
let nki = 0
let aki = 0
const sum = Array(dim).fill(0)
const min = (cells[k][i].min = Array(dim).fill(Infinity))
const max = (cells[k][i].max = Array(dim).fill(-Infinity))
const s = Array(dim).fill(0)
for (const ccell of cells[k + 1].slice(i * spl_size, (i + 1) * spl_size)) {
n += ccell.n
const ccells = cells[k + 1].slice(i * spl_size, (i + 1) * spl_size)
for (const ccell of ccells) {
nki += ccell.n
aki += ccell.area
for (let p = 0; p < dim; p++) {
m[p] += ccell.m[p] * ccell.n
sum[p] += ccell.m[p] * ccell.n
min[p] = Math.min(min[p], ccell.min[p])
max[p] = Math.max(max[p], ccell.max[p])
s[p] += (ccell.s[p] ** 2 + ccell.m[p] ** 2) * ccell.n
}
}
cells[k][i].n = n
cells[k][i].m = m.map(v => (n > 0 ? v / n : 0))
cells[k][i].s = s.map((v, p) => (n > 0 ? Math.sqrt(v / n - m[p] ** 2) : 0))
cells[k][i].n = nki
cells[k][i].m = sum.map(v => (nki > 0 ? v / nki : 0))
cells[k][i].s = s.map((v, p) => (nki > 0 ? Math.sqrt(v / nki - (sum[p] / nki) ** 2) : 0))
const eps = 0.1
cells[k][i].dist = Array(dim).fill('normal')
cells[k][i].area = aki
for (let d = 0; d < dim; d++) {
let confl = 0
let dist = 'normal'
for (const ccell of ccells) {
let mdiff = 0
let sdiff = 0
if (cells[k][i].m[d] !== 0) {
mdiff += Math.abs((cells[k][i].m[d] - ccell.m[d]) / cells[k][i].m[d])
} else if (ccell.m[d] !== 0) {
mdiff += Math.abs((cells[k][i].m[d] - ccell.m[d]) / ccell.m[d])
}
if (cells[k][i].s[d] !== 0) {
sdiff += Math.abs((cells[k][i].s[d] - ccell.s[d]) / cells[k][i].s[d])
} else if (ccell.s[d] !== 0) {
sdiff += Math.abs((cells[k][i].s[d] - ccell.s[d]) / ccell.s[d])
}
if (dist !== ccell.dist && mdiff < eps && sdiff < eps) {
confl += ccell.n
} else if (mdiff >= eps || sdiff >= eps) {
confl = nki
}
}
if (nki > 0 && confl / nki > this._t) {
dist = 'none'
}
cells[k][i].dist[d] = dist
}
}
}

let relevantCells = [this._cells]
for (let k = 1; k < cells.length; k++) {
const childRelevantCells = []
for (let i = 0; i < relevantCells.length; i++) {
for (const child of relevantCells[i].children) {
if (child.n < child.area * this._c) {
continue
}
childRelevantCells.push(child)
}
}
relevantCells = childRelevantCells
}

this._clusters = []
const stack = []
while (true) {
if (stack.length === 0) {
if (relevantCells.length === 0) {
break
}
stack.push(relevantCells.pop())
this._clusters.push([])
}
const curcell = stack.pop()
this._clusters[this._clusters.length - 1].push(curcell)

for (let k = relevantCells.length - 1; k >= 0; k--) {
const c = relevantCells[k]
let adjointCnt = 0
for (let d = 0; d < dim && adjointCnt < 2; d++) {
if (curcell.ranges[d][0] === c.ranges[d][0] && curcell.ranges[d][1] === c.ranges[d][1]) {
continue
} else if (curcell.ranges[d][0] === c.ranges[d][1] || curcell.ranges[d][1] === c.ranges[d][0]) {
adjointCnt++
} else {
adjointCnt = Infinity
}
}
if (adjointCnt === 1) {
stack.push(c)
relevantCells.splice(k, 1)
}
}
}
}
Expand All @@ -109,5 +201,19 @@ export default class STING {
* @param {Array<Array<number>>} datas Sample data
* @returns {number[]} Predicted values
*/
predict(datas) {}
predict(datas) {
const p = []
for (let i = 0; i < datas.length; i++) {
p[i] = -1
for (let k = 0; k < this._clusters.length && p[i] < 0; k++) {
for (const cell of this._clusters[k]) {
if (datas[i].every((v, d) => cell.ranges[d][0] <= v && v <= cell.ranges[d][1])) {
p[i] = k
break
}
}
}
}
return p
}
}
40 changes: 40 additions & 0 deletions tests/gui/view/sting.test.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
import { getPage } from '../helper/browser'

describe('clustering', () => {
/** @type {Awaited<ReturnType<getPage>>} */
let page
beforeEach(async () => {
page = await getPage()
const taskSelectBox = page.locator('#ml_selector dl:first-child dd:nth-child(5) select')
await taskSelectBox.selectOption('CT')
const modelSelectBox = page.locator('#ml_selector .model_selection #mlDisp')
await modelSelectBox.selectOption('sting')
})

afterEach(async () => {
await page?.close()
})

test('initialize', async () => {
const methodMenu = page.locator('#ml_selector #method_menu')
const buttons = methodMenu.locator('.buttons')

const c = buttons.locator('input:nth-of-type(1)')
await expect(c.inputValue()).resolves.toBe('500')
})

test('learn', async () => {
const methodMenu = page.locator('#ml_selector #method_menu')
const buttons = methodMenu.locator('.buttons')

const clusters = buttons.locator('span:last-child')
await expect(clusters.textContent()).resolves.toBe('')

const fitButton = buttons.locator('input[value=Fit]')
await fitButton.dispatchEvent('click')

const svg = page.locator('#plot-area svg')
await expect(svg.locator('.datas circle').count()).resolves.toBe(300)
await expect(clusters.textContent()).resolves.toMatch(/^[0-9]+$/)
})
})
25 changes: 25 additions & 0 deletions tests/lib/model/sting.test.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
import Matrix from '../../../lib/util/matrix.js'
import STING from '../../../lib/model/sting.js'

import { randIndex } from '../../../lib/evaluate/clustering.js'

test('clustering', () => {
const model = new STING(1)
const n = 50
const x0 = Matrix.concat(
Matrix.concat(Matrix.randn(n, 2, 0, 0.1), Matrix.randn(n, 2, 5, 0.1)),
Matrix.randn(n, 2, [0, 5], 0.1)
)
const x = x0.toArray()

model.fit(x)
const y = model.predict(x)
expect(y).toHaveLength(x.length)

const t = []
for (let i = 0; i < x.length; i++) {
t[i] = Math.floor(i / n)
}
const ri = randIndex(y, t)
expect(ri).toBeGreaterThan(0.9)
})