Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 6 additions & 3 deletions lib/model/zip.js
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,11 @@ export default class ZeroInflatedPoisson {
// https://qiita.com/nozma/items/52211b1bacaa8a898164
// http://web.uvic.ca/~dgiles/downloads/count/zip.pdf
// https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Zero-Inflated_Poisson_Regression.pdf
constructor() {
this._method = 'ml'
/**
* @param {'moments' | 'maximum_likelihood'} [method=maximum_likelihood] Method name
*/
constructor(method = 'maximum_likelihood') {
this._method = method
}

/**
Expand All @@ -17,7 +20,7 @@ export default class ZeroInflatedPoisson {
* @param {number[]} x Training data
*/
fit(x) {
if (this._method === 'mo') {
if (this._method === 'moments') {
this._mo(x)
} else {
this._ml(x)
Expand Down
46 changes: 22 additions & 24 deletions tests/lib/model/zip.test.js
Original file line number Diff line number Diff line change
Expand Up @@ -14,33 +14,31 @@ const random_poisson = l => {
return k - 1
}

test('density estimation', () => {
const model = new ZeroInflatedPoisson()
const x = []
for (let i = 0; i < 10000; i++) {
const r = Math.random()
if (r < 0.5) {
x.push(0)
} else {
x.push(random_poisson(1))
describe('density estimation', () => {
test.each([undefined, 'moments', 'maximum_likelihood'])('%s', method => {
const model = new ZeroInflatedPoisson(method)
const x = []
for (let i = 0; i < 10000; i++) {
const r = Math.random()
x.push(r < 0.5 ? 0 : random_poisson(1))
}
}

model.fit(x)
model.fit(x)

const y = [0, 1, 2, 3, 4, 5]
const p = Array(y.length).fill(0)
p[0] += 0.5
for (let i = 0; i < y.length; i++) {
let f = 1
for (let k = 2; k <= i; k++) {
f *= k
const y = [0, 1, 2, 3, 4, 5]
const p = Array(y.length).fill(0)
p[0] += 0.5
for (let i = 0; i < y.length; i++) {
let f = 1
for (let k = 2; k <= i; k++) {
f *= k
}
p[i] += ((1 / f) * Math.exp(-1)) / 2
}
p[i] += ((1 / f) * Math.exp(-1)) / 2
}

const pred = model.probability(y)
for (let i = 0; i < y.length; i++) {
expect(pred[i]).toBeCloseTo(p[i])
}
const pred = model.probability(y)
for (let i = 0; i < y.length; i++) {
expect(pred[i]).toBeCloseTo(p[i])
}
})
})