Skip to content
25 changes: 15 additions & 10 deletions ciphers/rsa_key_generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,7 @@
import random
import sys

from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
from . import cryptomath_module, rabin_miller


def main() -> None:
Expand All @@ -13,20 +12,26 @@ def main() -> None:


def generate_key(key_size: int) -> tuple[tuple[int, int], tuple[int, int]]:
print("Generating prime p...")
p = rabinMiller.generate_large_prime(key_size)
print("Generating prime q...")
q = rabinMiller.generate_large_prime(key_size)
"""
>>> random.seed(0) # for repeatability
>>> public_key, private_key = generate_key(8)
>>> public_key
(26569, 239)
>>> private_key
(26569, 2855)
"""
p = rabin_miller.generate_large_prime(key_size)
q = rabin_miller.generate_large_prime(key_size)
n = p * q

print("Generating e that is relatively prime to (p - 1) * (q - 1)...")
# Generate e that is relatively prime to (p - 1) * (q - 1)
while True:
e = random.randrange(2 ** (key_size - 1), 2 ** (key_size))
if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1:
if cryptomath_module.gcd(e, (p - 1) * (q - 1)) == 1:
break

print("Calculating d that is mod inverse of e...")
d = cryptoMath.find_mod_inverse(e, (p - 1) * (q - 1))
# Calculate d that is mod inverse of e
d = cryptomath_module.find_mod_inverse(e, (p - 1) * (q - 1))

public_key = (n, e)
private_key = (n, d)
Expand Down
155 changes: 83 additions & 72 deletions data_structures/binary_tree/binary_search_tree.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,62 @@
"""
r"""
A binary search Tree

Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13

>>> t = BinarySearchTree()
>>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
8 3 1 6 4 7 10 14 13
>>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
1 4 7 6 3 13 14 10 8
>>> t.remove(20)
Traceback (most recent call last):
...
ValueError: Value 20 not found
>>> BinarySearchTree().search(6)
Traceback (most recent call last):
...
IndexError: Warning: Tree is empty! please use another.

Other example:

>>> testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> t = BinarySearchTree()
>>> for i in testlist:
... t.insert(i)

Prints all the elements of the list in order traversal
>>> print(t)
{'8': ({'3': (1, {'6': (4, 7)})}, {'10': (None, {'14': (13, None)})})}

Test existence
>>> t.search(6) is not None
True
>>> t.search(-1) is not None
False

>>> t.search(6).is_right
True
>>> t.search(1).is_right
False

>>> t.get_max().value
14
>>> t.get_min().value
1
>>> t.empty()
False
>>> for i in testlist:
... t.remove(i)
>>> t.empty()
True
"""
Comment on lines +1 to 60
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't know if doctest.testmod will run these doctests since they're not contained in any function or class. @cclauss Where should these examples go?


from collections.abc import Iterable
Expand All @@ -20,6 +77,10 @@ def __repr__(self) -> str:
return str(self.value)
return pformat({f"{self.value}": (self.left, self.right)}, indent=1)

@property
def is_right(self):
return self.parent and self is self.parent.right


class BinarySearchTree:
def __init__(self, root: Node | None = None):
Expand All @@ -35,18 +96,13 @@ def __reassign_nodes(self, node: Node, new_children: Node | None) -> None:
if new_children is not None: # reset its kids
new_children.parent = node.parent
if node.parent is not None: # reset its parent
if self.is_right(node): # If it is the right children
if node.is_right: # If it is the right child
node.parent.right = new_children
else:
node.parent.left = new_children
else:
self.root = new_children

def is_right(self, node: Node) -> bool:
if node.parent and node.parent.right:
return node == node.parent.right
return False

def empty(self) -> bool:
return self.root is None

Expand Down Expand Up @@ -119,22 +175,26 @@ def get_min(self, node: Node | None = None) -> Node | None:
return node

def remove(self, value: int) -> None:
node = self.search(value) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(node, None)
elif node.left is None: # Has only right children
self.__reassign_nodes(node, node.right)
elif node.right is None: # Has only left children
self.__reassign_nodes(node, node.left)
else:
tmp_node = self.get_max(
node.left
) # Gets the max value of the left branch
self.remove(tmp_node.value) # type: ignore
node.value = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
# Look for the node with that label
node = self.search(value)
if node is None:
msg = f"Value {value} not found"
raise ValueError(msg)

if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(node, None)
elif node.left is None: # Has only right children
self.__reassign_nodes(node, node.right)
elif node.right is None: # Has only left children
self.__reassign_nodes(node, node.left)
else:
predecessor = self.get_max(
node.left
) # Gets the max value of the left branch
self.remove(predecessor.value) # type: ignore
node.value = (
predecessor.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure

def preorder_traverse(self, node: Node | None) -> Iterable:
if node is not None:
Expand Down Expand Up @@ -177,55 +237,6 @@ def postorder(curr_node: Node | None) -> list[Node]:
return node_list


def binary_search_tree() -> None:
r"""
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13

>>> t = BinarySearchTree()
>>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
8 3 1 6 4 7 10 14 13
>>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
1 4 7 6 3 13 14 10 8
>>> BinarySearchTree().search(6)
Traceback (most recent call last):
...
IndexError: Warning: Tree is empty! please use another.
"""
testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
t = BinarySearchTree()
for i in testlist:
t.insert(i)

# Prints all the elements of the list in order traversal
print(t)

if t.search(6) is not None:
print("The value 6 exists")
else:
print("The value 6 doesn't exist")

if t.search(-1) is not None:
print("The value -1 exists")
else:
print("The value -1 doesn't exist")

if not t.empty():
print("Max Value: ", t.get_max().value) # type: ignore
print("Min Value: ", t.get_min().value) # type: ignore

for i in testlist:
t.remove(i)
print(t)


if __name__ == "__main__":
import doctest

Expand Down