Skip to content

Create centripetal_force.py #7778

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Oct 29, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 49 additions & 0 deletions physics/centripetal_force.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
"""
Description : Centripetal force is the force acting on an object in
curvilinear motion directed towards the axis of rotation
or centre of curvature.

The unit of centripetal force is newton.

The centripetal force is always directed perpendicular to the
direction of the object’s displacement. Using Newton’s second
law of motion, it is found that the centripetal force of an object
moving in a circular path always acts towards the centre of the circle.
The Centripetal Force Formula is given as the product of mass (in kg)
and tangential velocity (in meters per second) squared, divided by the
radius (in meters) that implies that on doubling the tangential velocity,
the centripetal force will be quadrupled. Mathematically it is written as:
F = mv²/r
Where, F is the Centripetal force, m is the mass of the object, v is the
speed or velocity of the object and r is the radius.

Reference: https://byjus.com/physics/centripetal-and-centrifugal-force/
"""


def centripetal(mass: float, velocity: float, radius: float) -> float:
"""
The Centripetal Force formula is given as: (m*v*v)/r

>>> round(centripetal(15.5,-30,10),2)
1395.0
>>> round(centripetal(10,15,5),2)
450.0
>>> round(centripetal(20,-50,15),2)
3333.33
>>> round(centripetal(12.25,40,25),2)
784.0
>>> round(centripetal(50,100,50),2)
10000.0
"""
if mass < 0:
raise ValueError("The mass of the body cannot be negative")
if radius <= 0:
raise ValueError("The radius is always a positive non zero integer")
return (mass * (velocity) ** 2) / radius


if __name__ == "__main__":
import doctest

doctest.testmod(verbose=True)