Skip to content
12 changes: 6 additions & 6 deletions machine_learning/xgboost_regressor.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,13 +39,13 @@ def xgboost(

def main() -> None:
"""
>>> main()
Mean Absolute Error : 0.30957163379906033
Mean Square Error : 0.22611560196662744

The URL for this algorithm
https://xgboost.readthedocs.io/en/stable/
California house price dataset is used to demonstrate the algorithm.

Expected error values:
Mean Absolute Error: 0.30957163379906033
Mean Square Error: 0.22611560196662744
"""
# Load California house price dataset
california = fetch_california_housing()
Expand All @@ -55,8 +55,8 @@ def main() -> None:
)
predictions = xgboost(x_train, y_train, x_test)
# Error printing
print(f"Mean Absolute Error : {mean_absolute_error(y_test, predictions)}")
print(f"Mean Square Error : {mean_squared_error(y_test, predictions)}")
print(f"Mean Absolute Error: {mean_absolute_error(y_test, predictions)}")
print(f"Mean Square Error: {mean_squared_error(y_test, predictions)}")


if __name__ == "__main__":
Expand Down