Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
126 changes: 126 additions & 0 deletions regular_xgboost.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
#!/usr/bin/env python
# coding: utf-8

# In[1]:


import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.ensemble import GradientBoostingClassifier


# In[4]:


train_data = pd.read_csv(r"C:\Users\ankus\OneDrive\Desktop\regular\train.csv")
test_data = pd.read_csv(r"C:\Users\ankus\OneDrive\Desktop\regular\test.csv")


# In[5]:


y_train = train_data["Survived"]
train_data.drop(labels="Survived", axis=1, inplace=True)


# In[6]:


full_data = train_data.append(test_data)


# In[7]:


drop_columns = ["Name", "Age", "SibSp", "Ticket", "Cabin", "Parch", "Embarked"]
full_data.drop(labels=drop_columns, axis=1, inplace=True)


# In[8]:


full_data = pd.get_dummies(full_data, columns=["Sex"])
full_data.fillna(value=0.0, inplace=True)


# In[9]:


X_train = full_data.values[0:891]
X_test = full_data.values[891:]


# In[11]:


scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
#Now we can split the data into training and te


# In[12]:


state = 12
test_size = 0.30

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,
test_size=test_size, random_state=state)


# In[13]:


lr_list = [0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1]

for learning_rate in lr_list:
gb_clf = GradientBoostingClassifier(n_estimators=20, learning_rate=learning_rate, max_features=2, max_depth=2, random_state=0)
gb_clf.fit(X_train, y_train)

print("Learning rate: ", learning_rate)
print("Accuracy score (training): {0:.3f}".format(gb_clf.score(X_train, y_train)))
print("Accuracy score (validation): {0:.3f}".format(gb_clf.score(X_val, y_val)))


# In[14]:


gb_clf2 = GradientBoostingClassifier(n_estimators=20, learning_rate=0.5, max_features=2, max_depth=2, random_state=0)
gb_clf2.fit(X_train, y_train)
predictions = gb_clf2.predict(X_val)

print("Confusion Matrix:")
print(confusion_matrix(y_val, predictions))

print("Classification Report")
print(classification_report(y_val, predictions))


# In[15]:


from xgboost import XGBClassifier


# In[16]:


xgb_clf = XGBClassifier()
xgb_clf.fit(X_train, y_train)


# In[17]:


score = xgb_clf.score(X_val, y_val)
print(score)


# In[ ]: