Skip to content

Cleanup Rosenbrock tutorial #315

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 7, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 30 additions & 25 deletions docs/src/tutorials/rosenbrock.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ for common workflows of the package and give copy-pastable starting points.

```@example rosenbrock
# Define the problem to solve
using Optimization, ForwardDiff, Zygote, Test, Random
using Optimization, ForwardDiff, Zygote

rosenbrock(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2
x0 = zeros(2)
Expand All @@ -33,14 +33,14 @@ sol = solve(prob, SimulatedAnnealing())
prob = OptimizationProblem(f, x0, _p, lb=[-1.0, -1.0], ub=[0.8, 0.8])
sol = solve(prob, SAMIN())

l1 = rosenbrock(x0)
prob = OptimizationProblem(rosenbrock, x0)
l1 = rosenbrock(x0, _p)
prob = OptimizationProblem(rosenbrock, x0, _p)
sol = solve(prob, NelderMead())

# Now a gradient-based optimizer with forward-mode automatic differentiation

optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff();cons= cons)
prob = OptimizationProblem(optf, x0)
optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff())
prob = OptimizationProblem(optf, x0, _p)
sol = solve(prob, BFGS())

# Now a second order optimizer using Hessians generated by forward-mode automatic differentiation
Expand All @@ -53,39 +53,44 @@ sol = solve(prob, Optim.KrylovTrustRegion())

# Now derivative-based optimizers with various constraints

cons = (x,p) -> [x[1]^2 + x[2]^2]
optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff();cons= cons)
prob = OptimizationProblem(optf, x0)
sol = solve(prob, IPNewton())
cons = (x,p) -> [x[1]^2 + x[2]^2]
optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff();cons= cons)
#prob = OptimizationProblem(optf, x0, _p)
#sol = solve(prob, IPNewton()) # No lcons or rcons, so constraints not satisfied

prob = OptimizationProblem(optf, x0, lcons = [-Inf], ucons = [Inf])
sol = solve(prob, IPNewton())
prob = OptimizationProblem(optf, x0, _p, lcons = [-Inf], ucons = [Inf])
sol = solve(prob, IPNewton()) # Note that -Inf < x[1]^2 + x[2]^2 < Inf is always true

prob = OptimizationProblem(optf, x0, lcons = [-5.0], ucons = [10.0])
sol = solve(prob, IPNewton())
prob = OptimizationProblem(optf, x0, _p, lcons = [-5.0], ucons = [10.0])
sol = solve(prob, IPNewton()) # Again, -5.0 < x[1]^2 + x[2]^2 < 10.0

prob = OptimizationProblem(optf, x0, lcons = [-Inf], ucons = [Inf],
prob = OptimizationProblem(optf, x0, _p, lcons = [-Inf], ucons = [Inf],
lb = [-500.0,-500.0], ub=[50.0,50.0])
sol = solve(prob, IPNewton())

prob = OptimizationProblem(optf, x0, _p, lcons = [0.5], ucons = [0.5],
lb = [-500.0,-500.0], ub=[50.0,50.0])
sol = solve(prob, IPNewton()) # Notice now that x[1]^2 + x[2]^2 ≈ 0.5:
# cons(sol.minimizer, _p) = 0.49999999999999994

function con2_c(x,p)
[x[1]^2 + x[2]^2, x[2]*sin(x[1])-x[1]]
end

optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff();cons= con2_c)
prob = OptimizationProblem(optf, x0, lcons = [-Inf,-Inf], ucons = [Inf,Inf])
prob = OptimizationProblem(optf, x0, _p, lcons = [-Inf,-Inf], ucons = [Inf,Inf])
sol = solve(prob, IPNewton())

cons_circ = (x,p) -> [x[1]^2 + x[2]^2]
optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff();cons= cons_circ)
prob = OptimizationProblem(optf, x0, lcons = [-Inf], ucons = [0.25^2])
sol = solve(prob, IPNewton())
prob = OptimizationProblem(optf, x0, _p, lcons = [-Inf], ucons = [0.25^2])
sol = solve(prob, IPNewton()) # -Inf < cons_circ(sol.minimizer, _p) = 0.25^2

# Now let's switch over to OptimizationOptimisers with reverse-mode AD

using OptimizationOptimisers
optf = OptimizationFunction(rosenbrock, Optimization.AutoZygote())
prob = OptimizationProblem(optf, x0)
prob = OptimizationProblem(optf, x0, _p)
sol = solve(prob, Adam(0.05), maxiters = 1000, progress = false)

## Try out CMAEvolutionStrategy.jl's evolutionary methods
Expand All @@ -97,27 +102,27 @@ sol = solve(prob, CMAEvolutionStrategyOpt())

using OptimizationNLopt, ModelingToolkit
optf = OptimizationFunction(rosenbrock, Optimization.AutoModelingToolkit())
prob = OptimizationProblem(optf, x0)
prob = OptimizationProblem(optf, x0, _p)

sol = solve(prob, Opt(:LN_BOBYQA, 2))
sol = solve(prob, Opt(:LD_LBFGS, 2))

## Add some box constarints and solve with a few NLopt.jl methods

prob = OptimizationProblem(optf, x0, lb=[-1.0, -1.0], ub=[0.8, 0.8])
prob = OptimizationProblem(optf, x0, _p, lb=[-1.0, -1.0], ub=[0.8, 0.8])
sol = solve(prob, Opt(:LD_LBFGS, 2))
sol = solve(prob, Opt(:G_MLSL_LDS, 2), nstart=2, local_method = Opt(:LD_LBFGS, 2), maxiters=10000)
# sol = solve(prob, Opt(:G_MLSL_LDS, 2), nstart=2, local_method = Opt(:LD_LBFGS, 2), maxiters=10000)

## Evolutionary.jl Solvers

using OptimizationEvolutionary
sol = solve(prob, CMAES(μ =40 , λ = 100),abstol=1e-15)
sol = solve(prob, CMAES(μ =40 , λ = 100),abstol=1e-15) # -1.0 ≤ x[1], x[2] ≤ 0.8

## BlackBoxOptim.jl Solvers

using OptimizationBBO
prob = Optimization.OptimizationProblem(rosenbrock, x0, lb=[-1.0, -1.0], ub=[0.8, 0.8])
sol = solve(prob, BBO())
prob = Optimization.OptimizationProblem(rosenbrock, x0, _p, lb=[-1.0, 0.2], ub=[0.8, 0.43])
sol = solve(prob, BBO_adaptive_de_rand_1_bin()) # -1.0 ≤ x[1] ≤ 0.8, 0.2 ≤ x[2] ≤ 0.43
```

And this is only a small subset of what Optimization.jl has to offer!
And this is only a small subset of what Optimization.jl has to offer!