CCTV Fight Prediction End-to-End Pipeline
This project aims to detect violence in CCTV camera footage using deep learning and video vision techniques. It uses a dataset of 100 videos each of non-violence and violence, with each video being 3 seconds long.
- Clone the Git Repository
git clone https://github.com/rohitcode005/CCTV-Fight-Prediction-end-to-end-pipeline-dvc-aws-deploy.git- Create Virtual Environment
python -m venv venv- Install Dependencies
pip install -r requirements.txt- Run Setup Script
python setup.py install- Place Kaggle API Key
mkdir ~/.kaggle/
mv kaggle.json ~/.kaggle/- Initialize DVC
dvc init- Run the Pipeline
dvc reproor
python run_pipeline.py- MLFLOW_TRACKING_URI: https://dagshub.com/rohitcode005/CCTV-Fight-Prediction-end-to-end-pipeline-dvc-aws-deploy.mlflow
- MLFLOW_TRACKING_USERNAME: rohitcode005
- MLFLOW_TRACKING_PASSWORD: (Leave blank)
- This project uses Keras and MLflow for tracking model accuracy and hyperparameter tuning.
- This project uses DVC to automate the workflow.
- This project is designed to be deployed on AWS using DVC.
