Skip to content

PyThaiNLP/MultiEL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MultiEL

Multilingual Entity Linking model by BELA model

This project want to create easy-to-use Multilingual Entity Linking model by BELA model for entity linking in 98 languages.

Origin Project

Install

pip install multiel

Usage

from multiel import BELA

bela_run = BELA(device="cuda")

print(bela_run.process_batch(["Jobs was CEO of Apple"]))
# output: [{'offsets': [9, 16], 'lengths': [3, 5], 'entities': ['Q484876', 'Q312'], 'md_scores': [0.24852867424488068, 0.7043067216873169], 'el_scores': [0.48497316241264343, 0.9504457712173462]}]
print(bela_run.process_batch(["ジョブズ氏はアップルのCEOだった"]))
# output: [{'offsets': [6, 6, 11], 'lengths': [5, 8, 3], 'entities': ['Q312', 'Q312', 'Q484876'], 'md_scores': [0.8206272721290588, 0.2937866449356079, 0.27033868432044983], 'el_scores': [0.9398021101951599, 0.0239552054554224, 0.4219340682029724]}]
print(bela_run.process_batch(["Jobs war der CEO von Apple"]))
# output: [{'offsets': [13, 21], 'lengths': [3, 5], 'entities': ['Q484876', 'Q312'], 'md_scores': [0.4644337594509125, 0.7975106835365295], 'el_scores': [0.6950674653053284, 0.9626906514167786]}]
print(bela_run.process_batch(["जॉब्स एप्पल के सीईओ थे"]))
# output: [{'offsets': [6, 15], 'lengths': [5, 4], 'entities': ['Q312', 'Q484876'], 'md_scores': [0.5419769883155823, 0.20518577098846436], 'el_scores': [0.8974292874336243, 0.3540962338447571]}]
print(bela_run.process_batch(["จ๊อบเคยเป็นซีอีโอบริษัทแอปเปิล"]))
# output: [{'offsets': [11, 23], 'lengths': [6, 7], 'entities': ['Q484876', 'Q312'], 'md_scores': [0.30301809310913086, 0.6399497389793396], 'el_scores': [0.7142490744590759, 0.8657019734382629]}]

API

from multiel import BELA

BELA(
 md_threshold:float=0.2,
 el_threshold:float=0.4, 
 checkpoint_name: str="wiki", 
 device: str="cuda:0",
 config_name:str="joint_el_mel_new",
 repo:str="wannaphong/BELA"
)
  • md_threshold: md threshold
  • el_threshold: Entity Linking threshold
  • checkpoint_name: checkpoint name (wiki, aida, mewsli, and e2e) or your file name with extension
  • device: device
  • config_name: config name (in the BELA project)
  • repo: Huggingface Hub repo (Default wannaphong/BELA)

Predict

BELA.process_batch([str, str])

How to train the model?

See more: Multilingual End to End Entity Linking

License

MIT license and the model is MIT license. (BELA is MIT licensed)

About

Multilingual Entity Linking model by BELA model

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published