MicroGenix integrates multi-omics data to identify the genotype-microbiome interactions in shaping molecular phenotype.
The MicroGenix R package is easily installed from the GitHub repository:
install.packages("devtools")
devtools::install_github("MicrobeLab/MicroGenix")
The MicroGenix R package includes three main functions. Detailed documentation is available through the R help interface (?MicroGenixTrain
, ?MicroGenixPredict
, ?MicroGenixAssociation
). Demo input files for running examples below are available in the extdata
folder.
MicroGenixTrain
is used to fit models to predict gene expression with elastic net. Predictors include SNPs, microbes, and SNP-microbe interactions.
input_taxa <- 'extdata/example_taxon_abundance.csv'
input_geno <- 'extdata/example_genotype_dosage.csv'
input_expr <- 'extdata/example_gene_expression.csv'
fit_data <- MicroGenixTrain(input_taxa, input_geno, input_expr, output_prefix = 'example_output_model')
input_taxa
and input_geno
are comma-separated table files in shape [number_of_samples, number_of_taxa] and [number_of_samples, number_of_SNPs], respectively. input_expr
is a file in shape [number_of_samples,] with the expression levels of a single gene.
MicroGenixPredict
predicts gene expression using models trained with MicroGenixTrain
.
input_taxa <- 'extdata/example_taxon_abundance.csv'
input_geno <- 'extdata/example_genotype_dosage.csv'
model <- 'example_output_model.rds'
predicted_data <- MicroGenixPredict(model, input_taxa, input_geno)
input_taxa
and input_geno
are in the same format as the input files for MicroGenixTrain
. model
is a model file generated using MicroGenixTrain
.
MicroGenixAssociation
performs association tests between phenotype and gene expression levels predicted using MicroGenixPredict
.
pred_expr <- predicted_data$predicted_expr
metadata <- 'extdata/example_metadata.csv'
assoc_result <- MicroGenixAssociation(pred_expr, metadata, pheno = 'pheno')
metadata
is a comma-separated file with phenotype and covariates.
Bugs and difficulties in using MicroGenix are welcome on the issue tracker.
The MicroGenix method is described in "Multi-omics integration unravels genotype-microbiome interactions shaping the conjunctival transcriptome". Models trained using the conjunctival multi-omics data are available here.