Skip to content

MicroGenix integrates multi-omics data to identify the genotype-microbiome interactions in shaping molecular phenotype.

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

MicrobeLab/MicroGenix

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MicroGenix

MicroGenix integrates multi-omics data to identify the genotype-microbiome interactions in shaping molecular phenotype.

Installation

The MicroGenix R package is easily installed from the GitHub repository:

install.packages("devtools") 
devtools::install_github("MicrobeLab/MicroGenix")

Manual

The MicroGenix R package includes three main functions. Detailed documentation is available through the R help interface (?MicroGenixTrain, ?MicroGenixPredict, ?MicroGenixAssociation). Demo input files for running examples below are available in the extdata folder.

MicroGenixTrain

MicroGenixTrain is used to fit models to predict gene expression with elastic net. Predictors include SNPs, microbes, and SNP-microbe interactions.

input_taxa <- 'extdata/example_taxon_abundance.csv'
input_geno <- 'extdata/example_genotype_dosage.csv'
input_expr <- 'extdata/example_gene_expression.csv'
fit_data <- MicroGenixTrain(input_taxa, input_geno, input_expr, output_prefix = 'example_output_model')

input_taxa and input_geno are comma-separated table files in shape [number_of_samples, number_of_taxa] and [number_of_samples, number_of_SNPs], respectively. input_expr is a file in shape [number_of_samples,] with the expression levels of a single gene.

MicroGenixPredict

MicroGenixPredict predicts gene expression using models trained with MicroGenixTrain.

input_taxa <- 'extdata/example_taxon_abundance.csv'
input_geno <- 'extdata/example_genotype_dosage.csv'
model <- 'example_output_model.rds'
predicted_data <- MicroGenixPredict(model, input_taxa, input_geno)

input_taxa and input_geno are in the same format as the input files for MicroGenixTrain. model is a model file generated using MicroGenixTrain.

MicroGenixAssociation

MicroGenixAssociation performs association tests between phenotype and gene expression levels predicted using MicroGenixPredict.

pred_expr <- predicted_data$predicted_expr
metadata <- 'extdata/example_metadata.csv'
assoc_result <- MicroGenixAssociation(pred_expr, metadata, pheno = 'pheno')

metadata is a comma-separated file with phenotype and covariates.

Other Resources

Bugs and difficulties in using MicroGenix are welcome on the issue tracker.

The MicroGenix method is described in "Multi-omics integration unravels genotype-microbiome interactions shaping the conjunctival transcriptome". Models trained using the conjunctival multi-omics data are available here.

About

MicroGenix integrates multi-omics data to identify the genotype-microbiome interactions in shaping molecular phenotype.

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages