Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -226,6 +226,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Fixed a bug where `precision=64` with `accelerator='ddp_spawn'` would throw a pickle error ([#6924](https://github.com/PyTorchLightning/pytorch-lightning/pull/6924))


- Fixed `dataloader_idx` argument value when predicting with only one `DataLoader` ([#7941](https://github.com/PyTorchLightning/pytorch-lightning/pull/7941))


## [1.3.5] - 2021-06-08

### Added
Expand Down
2 changes: 1 addition & 1 deletion pytorch_lightning/trainer/predict_loop.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ def _get_num_dataloaders(self, dataloaders: List[DataLoader]) -> int:

def _build_kwargs(self, batch, batch_idx, dataloader_idx):
step_kwargs = OrderedDict([('batch', batch), ('batch_idx', batch_idx)])
if self.num_dataloaders:
if self.num_dataloaders > 1:
step_kwargs['dataloader_idx'] = dataloader_idx
return step_kwargs

Expand Down
13 changes: 10 additions & 3 deletions tests/helpers/boring_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,20 +161,24 @@ def __init__(self, data_dir: str = './'):
self.checkpoint_state: Optional[str] = None

def prepare_data(self):
self.random_full = RandomDataset(32, 192)
self.random_full = RandomDataset(32, 64 * 4)

def setup(self, stage: Optional[str] = None):
if stage == "fit" or stage is None:
self.random_train = Subset(self.random_full, indices=range(64))
self.dims = self.random_train[0].shape

if stage in ("fit", "validate") or stage is None:
self.random_val = Subset(self.random_full, indices=range(64, 128))
self.random_val = Subset(self.random_full, indices=range(64, 64 * 2))

if stage == "test" or stage is None:
self.random_test = Subset(self.random_full, indices=range(128, 192))
self.random_test = Subset(self.random_full, indices=range(64 * 2, 64 * 3))
self.dims = getattr(self, "dims", self.random_test[0].shape)

if stage == "predict" or stage is None:
self.random_predict = Subset(self.random_full, indices=range(64 * 3, 64 * 4))
self.dims = getattr(self, "dims", self.random_predict[0].shape)

def train_dataloader(self):
return DataLoader(self.random_train)

Expand All @@ -183,3 +187,6 @@ def val_dataloader(self):

def test_dataloader(self):
return DataLoader(self.random_test)

def predict_dataloader(self):
return DataLoader(self.random_predict)
166 changes: 82 additions & 84 deletions tests/models/test_hooks.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,14 +11,16 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from inspect import getmembers, isfunction
from unittest import mock
from unittest.mock import PropertyMock
from unittest.mock import ANY, PropertyMock

import pytest
import torch
from torch.utils.data import DataLoader

from pytorch_lightning import Trainer
from pytorch_lightning import __version__, LightningDataModule, Trainer
from tests.helpers import BoringDataModule, BoringModel, RandomDataset
from tests.helpers.runif import RunIf

Expand Down Expand Up @@ -666,107 +668,103 @@ def test_trainer_datamodule_hook_system(tmpdir):

class HookedDataModule(BoringDataModule):

def __init__(self):
def __init__(self, called):
super().__init__()
self.called = []

def prepare_data(self):
self.called.append("prepare_data")
super().prepare_data()

def setup(self, stage=None):
self.called.append(f"setup_{stage}")
super().setup(stage=stage)

def teardown(self, stage=None):
self.called.append(f"teardown_{stage}")
super().teardown(stage=stage)

def train_dataloader(self):
self.called.append("train_dataloader")
return super().train_dataloader()

def test_dataloader(self):
self.called.append("test_dataloader")
return super().test_dataloader()

def val_dataloader(self):
self.called.append("val_dataloader")
return super().val_dataloader()

def predict_dataloader(self):
self.called.append("predict_dataloader")

def transfer_batch_to_device(self, *args, **kwargs):
self.called.append("transfer_batch_to_device")
return super().transfer_batch_to_device(*args, **kwargs)

def on_before_batch_transfer(self, *args, **kwargs):
self.called.append("on_before_batch_transfer")
return super().on_before_batch_transfer(*args, **kwargs)

def on_after_batch_transfer(self, *args, **kwargs):
self.called.append("on_after_batch_transfer")
return super().on_after_batch_transfer(*args, **kwargs)
def call(hook, fn, *args, **kwargs):
out = fn(*args, **kwargs)
d = {'name': hook}
if args:
d['args'] = args
if kwargs:
d['kwargs'] = kwargs
called.append(d)
return out

hooks = {h for h, _ in getmembers(LightningDataModule, predicate=isfunction)}
for h in hooks:
attr = getattr(self, h)
setattr(self, h, partial(call, h, attr))

model = BoringModel()
dm = HookedDataModule()

batches = 2
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=1,
limit_train_batches=2,
limit_test_batches=1,
limit_train_batches=batches,
limit_val_batches=batches,
limit_test_batches=batches,
limit_predict_batches=batches,
progress_bar_refresh_rate=0,
weights_summary=None,
reload_dataloaders_every_epoch=True,
)

called = []
dm = HookedDataModule(called)
trainer.fit(model, datamodule=dm)
batch_transfer = [
dict(name='on_before_batch_transfer', args=(ANY, None)),
dict(name='transfer_batch_to_device', args=(ANY, torch.device('cpu'), None)),
dict(name='on_after_batch_transfer', args=(ANY, None)),
]
expected = [
'prepare_data',
'setup_fit',
'val_dataloader',
'on_before_batch_transfer',
'transfer_batch_to_device',
'on_after_batch_transfer',
'train_dataloader',
'on_before_batch_transfer',
'transfer_batch_to_device',
'on_after_batch_transfer',
'on_before_batch_transfer',
'transfer_batch_to_device',
'on_after_batch_transfer',
'val_dataloader',
'on_before_batch_transfer',
'transfer_batch_to_device',
'on_after_batch_transfer',
'teardown_fit',
dict(name='prepare_data'),
dict(name='setup', kwargs=dict(stage='fit')),
dict(name='val_dataloader'),
*batch_transfer * batches,
dict(name='train_dataloader'),
*batch_transfer * batches,
dict(name='val_dataloader'),
*batch_transfer * batches,
dict(
name='on_save_checkpoint',
args=({
'callbacks': ANY,
'epoch': 1,
'global_step': 2,
'lr_schedulers': ANY,
'optimizer_states': ANY,
'pytorch-lightning_version': __version__,
'state_dict': ANY
}, )
),
dict(name='teardown', kwargs=dict(stage='fit')),
]
assert dm.called == expected
assert called == expected

dm = HookedDataModule()
called = []
dm = HookedDataModule(called)
trainer.validate(model, datamodule=dm, verbose=False)
expected = [
'prepare_data',
'setup_validate',
'val_dataloader',
'on_before_batch_transfer',
'transfer_batch_to_device',
'on_after_batch_transfer',
'teardown_validate',
dict(name='prepare_data'),
dict(name='setup', kwargs=dict(stage='validate')),
dict(name='val_dataloader'),
*batch_transfer * batches,
dict(name='teardown', kwargs=dict(stage='validate')),
]
assert dm.called == expected
assert called == expected

dm = HookedDataModule()
called = []
dm = HookedDataModule(called)
trainer.test(model, datamodule=dm, verbose=False)
expected = [
'prepare_data',
'setup_test',
'test_dataloader',
'on_before_batch_transfer',
'transfer_batch_to_device',
'on_after_batch_transfer',
'teardown_test',
dict(name='prepare_data'),
dict(name='setup', kwargs=dict(stage='test')),
dict(name='test_dataloader'),
*batch_transfer * batches,
dict(name='teardown', kwargs=dict(stage='test')),
]
assert called == expected

called = []
dm = HookedDataModule(called)
trainer.predict(model, datamodule=dm)
expected = [
dict(name='prepare_data'),
dict(name='setup', kwargs=dict(stage='predict')),
dict(name='predict_dataloader'),
*batch_transfer * batches,
dict(name='teardown', kwargs=dict(stage='predict')),
]
assert dm.called == expected
assert called == expected