Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

### Fixed

- Fixed dataloaders are not reset when tuning the model ([#7566](https://github.com/PyTorchLightning/pytorch-lightning/pull/7566))


- Fixed parsing of multiple training dataloaders ([#7433](https://github.com/PyTorchLightning/pytorch-lightning/pull/7433))

Expand Down
10 changes: 8 additions & 2 deletions pytorch_lightning/tuner/batch_size_scaling.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,10 @@ def _run_power_scaling(
else:
raise # some other error not memory related

if not changed:
if changed:
# Force the train dataloader to reset as the batch size has changed
trainer.reset_train_dataloader(model)
else:
break
return new_size

Expand Down Expand Up @@ -192,7 +195,10 @@ def _run_binsearch_scaling(
else:
new_size, changed = _adjust_batch_size(trainer, batch_arg_name, factor=2.0, desc='succeeded')

if not changed:
if changed:
# Force the train dataloader to reset as the batch size has changed
trainer.reset_train_dataloader(model)
else:
break

except RuntimeError as exception:
Expand Down
47 changes: 28 additions & 19 deletions tests/tuner/test_scale_batch_size.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,14 +24,14 @@
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import EvalModelTemplate
from tests.helpers import BoringDataModule, BoringModel
from tests.helpers import BoringDataModule, BoringModel, RandomDataset
from tests.helpers.datamodules import MNISTDataModule
from tests.helpers.runif import RunIf


class BatchSizeDataModule(BoringDataModule):

def __init__(self, batch_size=None):
def __init__(self, batch_size):
super().__init__()
if batch_size is not None:
self.batch_size = batch_size
Expand All @@ -42,21 +42,23 @@ def train_dataloader(self):

class BatchSizeModel(BoringModel):

def __init__(self, batch_size=None):
def __init__(self, batch_size):
super().__init__()
if batch_size is not None:
self.batch_size = batch_size

def train_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=getattr(self, "batch_size", 1))

@pytest.mark.parametrize(
"model,datamodule", [
(BatchSizeModel(2), None),
(BatchSizeModel(2), BatchSizeDataModule(2)),
(BatchSizeModel(2), BatchSizeDataModule(None)),
(BatchSizeModel(None), BatchSizeDataModule(2)),
]
)
def test_scale_batch_size_method_with_model_or_datamodule(tmpdir, model, datamodule):

@pytest.mark.parametrize(["model_bs", "dm_bs"], [
(2, -1),
(2, 2),
(2, None),
(None, 2),
(16, 16),
])
def test_scale_batch_size_method_with_model_or_datamodule(tmpdir, model_bs, dm_bs):
""" Test the tuner method `Tuner.scale_batch_size` with a datamodule. """
trainer = Trainer(
default_root_dir=tmpdir,
Expand All @@ -65,14 +67,21 @@ def test_scale_batch_size_method_with_model_or_datamodule(tmpdir, model, datamod
max_epochs=1,
)
tuner = Tuner(trainer)
new_batch_size = tuner.scale_batch_size(
model=model, mode="binsearch", init_val=4, max_trials=2, datamodule=datamodule
)

model = BatchSizeModel(model_bs)
datamodule = BatchSizeDataModule(dm_bs) if dm_bs != -1 else None

new_batch_size = tuner.scale_batch_size(model, mode="binsearch", init_val=4, max_trials=2, datamodule=datamodule)
assert new_batch_size == 16
if hasattr(model, "batch_size"):
assert model.batch_size == 16
if datamodule is not None and hasattr(datamodule, "batch_size"):
assert datamodule.batch_size == 16

if model_bs is not None:
assert model.batch_size == new_batch_size
if dm_bs == -1:
# datamodule batch size takes precedence
assert trainer.train_dataloader.loaders.batch_size == new_batch_size
if dm_bs not in (-1, None):
assert datamodule.batch_size == new_batch_size
assert trainer.train_dataloader.loaders.batch_size == new_batch_size


def test_model_reset_correctly(tmpdir):
Expand Down