Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -437,6 +437,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Fixed `apex` not properly instantiated when running with `ddp` ([#7274](https://github.com/PyTorchLightning/pytorch-lightning/pull/7274))


- Fixed optimizer `state` not moved to `GPU` ([#7277](https://github.com/PyTorchLightning/pytorch-lightning/pull/7277))


## [1.2.7] - 2021-04-06

### Fixed
Expand Down
14 changes: 13 additions & 1 deletion pytorch_lightning/accelerators/accelerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
from collections import defaultdict
from typing import Any, Callable, Dict, Generator, Iterable, List, Optional, Union

import torch
Expand All @@ -25,7 +26,7 @@
from pytorch_lightning.plugins.training_type import TrainingTypePlugin
from pytorch_lightning.trainer.states import TrainerState
from pytorch_lightning.utilities import _NATIVE_AMP_AVAILABLE, rank_zero_warn
from pytorch_lightning.utilities.apply_func import move_data_to_device
from pytorch_lightning.utilities.apply_func import apply_to_collection, move_data_to_device
from pytorch_lightning.utilities.enums import AMPType, GradClipAlgorithmType, LightningEnum
from pytorch_lightning.utilities.types import EPOCH_OUTPUT, STEP_OUTPUT

Expand Down Expand Up @@ -102,11 +103,22 @@ def start_predicting(self, trainer: 'pl.Trainer') -> None:

def pre_dispatch(self, trainer: 'pl.Trainer') -> None:
"""Hook to do something before the training/evaluation/prediction starts."""
self._move_optimizer_state()

self.training_type_plugin.pre_dispatch()
if self.training_type_plugin.setup_optimizers_in_pre_dispatch:
self.setup_optimizers(trainer)

self.precision_plugin.pre_dispatch()

def _move_optimizer_state(self) -> None:
""" Moves the state of the optimizers to the GPU if needed. """
for opt in self.optimizers:
state = defaultdict(dict)
for p, v in opt.state.items():
state[p] = apply_to_collection(v, torch.Tensor, move_data_to_device, self.root_device)
opt.state = state

def dispatch(self, trainer: 'pl.Trainer') -> None:
"""Hook to do something before the training/evaluation/prediction starts."""
self.training_type_plugin.dispatch(trainer)
Expand Down
26 changes: 26 additions & 0 deletions tests/trainer/optimization/test_optimizers.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import EvalModelTemplate
from tests.helpers.boring_model import BoringModel
from tests.helpers.runif import RunIf


def test_optimizer_with_scheduling(tmpdir):
Expand Down Expand Up @@ -498,3 +499,28 @@ def configure_optimizers(self):
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
with pytest.warns(RuntimeWarning, match='the keys will be ignored'):
trainer.fit(model)


class TestModel(BoringModel):

def configure_optimizers(self):
# Adagrad creates state tensors immediately, model is not yet on GPU.
return torch.optim.Adagrad(self.parameters())

def on_train_start(self, *args, **kwargs):
opt = self.optimizers()
_, state = next(iter(opt.state.items()))
assert state["sum"].device == torch.device("cuda", self.local_rank) == self.device


@RunIf(min_gpus=2, special=True)
def test_optimizer_state_on_device(tmpdir):
""" Test that optimizers that create state initially at instantiation still end up with the state on the GPU. """
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
gpus=2,
accelerator="ddp",
fast_dev_run=True,
)
trainer.fit(model)