-
Notifications
You must be signed in to change notification settings - Fork 3.6k
[Fix] Move init dist connection into the setup function #6506
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
…we set up the accelerator
|
Some tests in |
We can't terminate the ddp connection after a trainer.fit call because we don't know if the user will call .fit or .test again right after it, and we want to enable that. The connection staying open could be a problem in pytest the way these tests are launched and stopped. A fixture could help us in the tests ensuring that no connections are open before running a new test, while still enabling the use case described above outside of the test environment. |
Maybe it helps to go back to before the accelerator refactor and look again what the order of calls were. The commit before acc refactor is 309ce7a |
| self.setup_training_type_plugin(self.training_type_plugin, model) | ||
| self.setup_optimizers(trainer) | ||
| self.connect_precision_plugin(self.precision_plugin) | ||
| self.setup_precision_plugin(self.precision_plugin) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
If anyone extended and made their own accelerator, this will be a breaking change so might need to handle a deprecation path here
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do you need to rename them ?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I don't i guess? It's just a bit concerning because if I don't rename them, connect_training_type_plugin will be calling plugin.setup, and connect will be calling training_type_plugin.connect. Just confusing function names. I think if it becomes an issue we can make this BW compatible however in most cases it seems users should be defining plugins, not accelerators.
|
|
||
| # TODO: we moved it to the trainer.fit after calling pre_dispatch | ||
| # ... need to double check that it is the correct place | ||
| # self.trainer.call_setup_hook(self.model) | ||
|
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
yeah my silly todo....
"need to double check that it is the correct place"
Thanks for double checking @SeanNaren 😄
tchaton
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM ! Great job !
# Conflicts: # CHANGELOG.md
ananthsub
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
🚀
| log.info("-" * 100) | ||
| log.info(f"distributed_backend={self.distributed_backend}") | ||
| log.info(f"All DDP processes registered. Starting ddp with {self.world_size} processes") | ||
| log.info("-" * 100) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
btw, shall we have this as a single message intend for 4 separate?
|
|
||
|
|
||
| @RunIf(deepspeed=True) | ||
| @RunIf(min_gpus=1, deepspeed=True, special=True) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
this is so cool :D
* Move connection setup into the setup function. Call setup hook after we set up the accelerator * Added CHANGELOG.md * fix setup order in callback test * fix input arguments in test * Mock distributed function, remove protection to turn into training type hook * Remove import * Add missing mock, ensure custom plugin does not create children process * Skip test on windows * Update deepspeed to init connection in setup * Do not initialize distributed module * Move DeepSpeed tests to special tests since dist communication is being set up * Special the test to see if this fixes CI * Delete accelerator connector test to see if its causing build to fail * Delete deepspeed test * Revert "Delete accelerator connector test to see if its causing build to fail" This reverts commit edde60b * Revert "Delete deepspeed test" This reverts commit 9d317429 * Reverse hook * Reverse setup hooks to debug again * Add todo so i know where i left off * For single device move in pre_dispatch after setup function * Add additional model to device hook if any additional parameters have been set * See if we can enable deepspeed tests * Revert "See if we can enable deepspeed tests" This reverts commit b5450de * See if this hook approach works * Introduce new granular hooks * Remove import, fix tpu spawn by moving the function to setup * Added missing special test Co-authored-by: Adrian Wälchli <[email protected]> (cherry picked from commit 4e9b453)
|
Setting milestone as 1.3 as it requires separating the fix from the API change to get into |
…ter) to github/third-party/PyTorchLightning/pytorch-lightning Summary: ### New commit log messages ## [UnReleased] - 2021-MM-DD ### Added - Added more explicit exception message when trying to execute `trainer.test()` or `trainer.validate()` with `fast_dev_run=True` ([#6667](Lightning-AI/pytorch-lightning#6667)) - Added `LightningCLI` class to provide simple reproducibility with minimum boilerplate training cli. ([#4492](Lightning-AI/pytorch-lightning#4492)) - Trigger warning when non-metric logged value with multi processes hasn't been reduced ([#6417](Lightning-AI/pytorch-lightning#6417)) - Added `gradient_clip_algorithm` argument to Trainer for gradient clipping by value ([#6123](Lightning-AI/pytorch-lightning#6123)). - Added a way to print to terminal without breaking up the progress bar ([#5470](Lightning-AI/pytorch-lightning#5470)) - Added support to checkpoint after training steps in `ModelCheckpoint` callback ([#6146](Lightning-AI/pytorch-lightning#6146)) - Added `checkpoint` parameter to callback's `on_save_checkpoint` hook ([#6072](Lightning-AI/pytorch-lightning#6072)) - Added `RunningStage.SANITY_CHECKING` ([#4945](Lightning-AI/pytorch-lightning#4945)) - Added `TrainerState.{FITTING,VALIDATING,TESTING,PREDICTING,TUNING}` ([#4945](Lightning-AI/pytorch-lightning#4945)) - Added `Trainer.validate()` method to perform one evaluation epoch over the validation set ([#4948](Lightning-AI/pytorch-lightning#4948)) - Added `LightningEnvironment` for Lightning-specific DDP ([#5915](Lightning-AI/pytorch-lightning#5915)) - Added `teardown()` hook to LightningDataModule ([#4673](Lightning-AI/pytorch-lightning#4673)) - Added `auto_insert_metric_name` parameter to `ModelCheckpoint` ([#6277](Lightning-AI/pytorch-lightning#6277)) - Added arg to `self.log` that enables users to give custom names when dealing with multiple dataloaders ([#6274](Lightning-AI/pytorch-lightning#6274)) - Added `teardown` method to `BaseProfiler` to enable subclasses defining post-profiling steps outside of `__del__` ([#6370](Lightning-AI/pytorch-lightning#6370)) - Added `setup` method to `BaseProfiler` to enable subclasses defining pre-profiling steps for every process ([#6633](Lightning-AI/pytorch-lightning#6633)) - Added no return warning to predict ([#6139](Lightning-AI/pytorch-lightning#6139)) - Added `Trainer.predict` config validation ([#6543](Lightning-AI/pytorch-lightning#6543)) - Added `AbstractProfiler` interface ([#6621](Lightning-AI/pytorch-lightning#6621)) - Added support for including module names for forward in the autograd trace of `PyTorchProfiler` ([#6349](Lightning-AI/pytorch-lightning#6349)) - Added support for the PyTorch 1.8.1 autograd profiler ([#6618](Lightning-AI/pytorch-lightning#6618)) - Added `outputs` parameter to callback's `on_validation_epoch_end` & `on_test_epoch_end` hooks ([#6120](Lightning-AI/pytorch-lightning#6120)) - Added `configure_sharded_model` hook ([#6679](Lightning-AI/pytorch-lightning#6679)) - Added support for `precision=64`, enabling training with double precision ([#6595](Lightning-AI/pytorch-lightning#6595)) - Added support for DDP communication hooks ([#6736](Lightning-AI/pytorch-lightning#6736)) - Added `artifact_location` argument to `MLFlowLogger` which will be passed to the `MlflowClient.create_experiment` call ([#6677](Lightning-AI/pytorch-lightning#6677)) - Added `model` parameter to precision plugins' `clip_gradients` signature ([#6764](Lightning-AI/pytorch-lightning#6764)) ### Changed - Renamed `pytorch_lightning.callbacks.swa` to `pytorch_lightning.callbacks.stochastic_weight_avg` ([#6259](Lightning-AI/pytorch-lightning#6259)) - Refactor `RunningStage` and `TrainerState` usage ([#4945](Lightning-AI/pytorch-lightning#4945)) - Changed `trainer.evaluating` to return `True` if validating or testing ([#4945](Lightning-AI/pytorch-lightning#4945)) - Changed `setup()` and `teardown()` stage argument to take any of `{fit,validate,test,predict}` ([#6386](Lightning-AI/pytorch-lightning#6386)) - Changed profilers to save separate report files per state and rank ([#6621](Lightning-AI/pytorch-lightning#6621)) - Changed `PyTorchProfiler` to use `torch.autograd.profiler.record_function` to record functions ([#6349](Lightning-AI/pytorch-lightning#6349)) ### Deprecated - `period` has been deprecated in favor of `every_n_val_epochs` in the `ModelCheckpoint` callback ([#6146](Lightning-AI/pytorch-lightning#6146)) - Deprecated `trainer.running_sanity_check` in favor of `trainer.sanity_checking` ([#4945](Lightning-AI/pytorch-lightning#4945)) - Deprecated `Profiler(output_filename)` in favor of `dirpath` and `filename` ([#6621](Lightning-AI/pytorch-lightning#6621)) - Deprecated `PytorchProfiler(profiled_functions)` in favor of `record_functions` ([#6349](Lightning-AI/pytorch-lightning#6349)) - Deprecated metrics in favor of `torchmetrics` ([#6505](Lightning-AI/pytorch-lightning#6505), [#6530](Lightning-AI/pytorch-lightning#6530), [#6540](Lightning-AI/pytorch-lightning#6540), [#6547](Lightning-AI/pytorch-lightning#6547), [#6515](Lightning-AI/pytorch-lightning#6515), [#6572](Lightning-AI/pytorch-lightning#6572), [#6573](Lightning-AI/pytorch-lightning#6573), [#6584](Lightning-AI/pytorch-lightning#6584), [#6636](Lightning-AI/pytorch-lightning#6636), [#6637](Lightning-AI/pytorch-lightning#6637), [#6649](Lightning-AI/pytorch-lightning#6649), [#6659](Lightning-AI/pytorch-lightning#6659), ) ### Removed - Removed support for passing a bool value to `profiler` argument of Trainer ([#6164](Lightning-AI/pytorch-lightning#6164)) - Removed no return warning from val/test step ([#6139](Lightning-AI/pytorch-lightning#6139)) - Removed passing a `ModelCheckpoint` instance to `Trainer(checkpoint_callback)` ([#6166](Lightning-AI/pytorch-lightning#6166)) - Removed deprecated Trainer argument `enable_pl_optimizer` and `automatic_optimization` ([#6163](Lightning-AI/pytorch-lightning#6163)) - Removed deprecated metrics ([#6161](Lightning-AI/pytorch-lightning#6161)) * from `pytorch_lightning.metrics.functional.classification` removed `to_onehot`, `to_categorical`, `get_num_classes`, `roc`, `multiclass_roc`, `average_precision`, `precision_recall_curve`, `multiclass_precision_recall_curve` * from `pytorch_lightning.metrics.functional.reduction` removed `reduce`, `class_reduce` - Removed deprecated `ModelCheckpoint` arguments `prefix`, `mode="auto"` ([#6162](Lightning-AI/pytorch-lightning#6162)) - Removed `mode='auto'` from `EarlyStopping` ([#6167](Lightning-AI/pytorch-lightning#6167)) - Removed legacy references for magic keys in the `Result` object ([#6016](Lightning-AI/pytorch-lightning#6016)) - Removed deprecated `LightningModule` `hparams` setter ([#6207](Lightning-AI/pytorch-lightning#6207)) - Removed legacy code to log or include metrics in the progress bar by returning them in a dict with the `"log"/"progress_bar"` magic keys. Use `self.log` instead ([#6734](Lightning-AI/pytorch-lightning#6734)) - Removed `optimizer_idx` argument from `training_step` in manual optimization ([#6093](Lightning-AI/pytorch-lightning#6093)) ### Fixed - Set better defaults for `rank_zero_only.rank` when training is launched with SLURM and torchelastic ([#6802](Lightning-AI/pytorch-lightning#6802)) - Made the `Plugin.reduce` method more consistent across all Plugins to reflect a mean-reduction by default ([#6011](Lightning-AI/pytorch-lightning#6011)) - Move lightning module to correct device type when using LightningDistributedWrapper ([#6070](Lightning-AI/pytorch-lightning#6070)) - Do not print top-k verbose log with `ModelCheckpoint(monitor=None)` ([#6109](Lightning-AI/pytorch-lightning#6109)) - Fixed csv extension check ([#6436](Lightning-AI/pytorch-lightning#6436)) - Fixed `ModelCheckpoint(monitor=None, save_last=True)` not saving checkpoints ([#6136](Lightning-AI/pytorch-lightning#6136)) - Fixed `ModelCheckpoint(save_top_k=0, save_last=True)` not saving the `last` checkpoint ([#6136](Lightning-AI/pytorch-lightning#6136)) - Fixed `.teardown(stage='fit')` getting called during `trainer.test` ([#6386](Lightning-AI/pytorch-lightning#6386)) - Fixed `.on_fit_{start,end}()` getting called during `trainer.test` ([#6386](Lightning-AI/pytorch-lightning#6386)) - Fixed LightningModule `all_gather` on cpu tensors ([#6416](Lightning-AI/pytorch-lightning#6416)) - Fixed torch distributed not available in setup hook for DDP ([#6506](Lightning-AI/pytorch-lightning#6506)) - Fixed `EarlyStopping` logic when `min_epochs` or `min_steps` requirement is not met ([#6705](Lightning-AI/pytorch-lightning#6705)) ## [1.2.7] - 2021-04-06 ### Fixed - Fixed resolve a bug with omegaconf and xm.save ([#6741](Lightning-AI/pytorch-lightning#6741)) - Fixed an issue with IterableDataset when __len__ is not defined ([#6828](Lightning-AI/pytorch-lightning#6828)) - Sanitize None params during pruning ([#6836](Lightning-AI/pytorch-lightning#6836)) - Enforce an epoch scheduler interval when using SWA ([#6588](Lightning-AI/pytorch-lightning#6588)) - Fixed TPU Colab hang issue, post training ([#6816](Lightning-AI/pytorch-lightning#6816)) - Fixed a bug where `TensorBoardLogger` would give a warning and not log correctly to a symbolic link `save_dir` ([#6730](Lightning-AI/pytorch-lightning#6730)) ## [1.2.6] - 2021-03-30 ### Changed - Changed the behavior of `on_epoch_start` to run at the beginning of validation & test epoch ([#6498](Lightning-AI/pytorch-lightning#6498)) ### Removed - Removed legacy code to include `step` dictionary returns in `callback_metrics`. Use `self.log_dict` instead. ([#6682](Lightning-AI/pytorch-lightning#6682)) ### Fixed - Fixed `DummyLogger.log_hyperparams` raising a `TypeError` when running with `fast_dev_run=True` ([#6398](Lightning-AI/pytorch-lightning#6398)) - Fixed error on TPUs when there was no `ModelCheckpoint` ([#6654](Lightning-AI/pytorch-lightning#6654)) - Fixed `trainer.test` freeze on TPUs ([#6654](Lightning-AI/pytorch-lightning#6654)) - Fixed a bug where gradients were disabled after calling `Trainer.predict` ([#6657](Lightning-AI/pytorch-lightning#6657)) - Fixed bug where no TPUs were detected in a TPU pod env ([#6719](Lightning-AI/pytorch-lightning#6719)) ## [1.2.5] - 2021-03-23 ### Changed - Update Gradient Clipping for the TPU Accelerator ([#6576](Lightning-AI/pytorch-lightning#6576)) - Refactored setup for typing friendly ([#6590](Lightning-AI/pytorch-lightning#6590)) ### Fixed - Fixed a bug where `all_gather` would not work correctly with `tpu_cores=8` ([#6587](Lightning-AI/pytorch-lightning#6587)) - Fixed comparing required versions ([#6434](Lightning-AI/pytorch-lightning#6434)) - Fixed duplicate logs appearing in console when using the python logging module ([#6275](Lightning-AI/pytorch-lightning#6275)) - Added Autocast in validation, test and predict modes for Native AMP ([#6565](Lightning-AI/pytorch-lightning#6565)) Reviewed By: shuyingsunshine21 Differential Revision: D27528929 fbshipit-source-id: 311c88f71461c2c79bbf185e28d7a6d683ccc26f
What does this PR do?
Fixes #6318
This fix moves the init ddp connection for DDP into the setup function, and reorders the hook such that setup can now have access to the initialized distributed environment. This is also important for FSDP.
This fix however diverges DDP Spawn from DDP, and should be noted in the docs. As @ananthsub and @awaelchli have brought up, we may need to discuss the responsibility of hooks, primarily because we're seeing some inflexibility in the API when changing call orders of hooks/custom loops.
Before submitting
PR review
Anyone in the community is free to review the PR once the tests have passed.
Before you start reviewing make sure you have read Review guidelines. In short, see the following bullet-list:
Did you have fun?
Make sure you had fun coding 🙃