Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pytorch_lightning/core/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ class LightningOptimizer:

def __init__(self, optimizer: Optimizer):

self.__dict__ = {k: v for k, v in optimizer.__dict__.items() if k != 'step'}
self.__dict__ = {k: v for k, v in optimizer.__dict__.items() if k not in ('step', "__del__")}

# For Horovod
if hasattr(optimizer, "skip_synchronize"):
Expand Down
77 changes: 77 additions & 0 deletions tests/core/test_lightning_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
from typing import Any
from unittest.mock import DEFAULT, patch

import torch
Expand Down Expand Up @@ -303,3 +305,78 @@ def configure_optimizers(self):
lbfgs = model.optimizers()
max_iter = lbfgs.param_groups[0]["max_iter"]
assert zero_grad.call_count == max_iter


class OptimizerWithHooks(Optimizer):

def __init__(self, model):
self._fwd_handles = []
self._bwd_handles = []
self.params = []
for _, mod in model.named_modules():
mod_class = mod.__class__.__name__
if mod_class != 'Linear':
continue

handle = mod.register_forward_pre_hook(self._save_input) # save the inputs
self._fwd_handles.append(handle) # collect forward-save-input hooks in list
handle = mod.register_backward_hook(self._save_grad_output) # save the gradients
self._bwd_handles.append(handle) # collect backward-save-grad hook in list

# save the parameters
params = [mod.weight]
if mod.bias is not None:
params.append(mod.bias)

# save a param_group for each module
d = {'params': params, 'mod': mod, 'layer_type': mod_class}
self.params.append(d)

super(OptimizerWithHooks, self).__init__(self.params, {"lr": 0.01})

def _save_input(self, mod, i):
"""Saves input of layer"""
if mod.training:
self.state[mod]['x'] = i[0]

def _save_grad_output(self, mod, _, grad_output):
"""
Saves grad on output of layer to
grad is scaled with batch_size since gradient is spread over samples in mini batch
"""
batch_size = grad_output[0].shape[0]
if mod.training:
self.state[mod]['grad'] = grad_output[0] * batch_size

def step(self, closure=None):
closure()
for group in self.param_groups:
_ = self.state[group['mod']]['x']
_ = self.state[group['mod']]['grad']
return True


def test_lightning_optimizer_keeps_hooks(tmpdir):

class TestModel(BoringModel):
count_on_train_batch_start = 0
count_on_train_batch_end = 0

def configure_optimizers(self):
return OptimizerWithHooks(self)

def on_train_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None:
self.count_on_train_batch_start += 1
optimizer = self.optimizers(use_pl_optimizer=False)
assert len(optimizer._fwd_handles) == 1

def on_train_batch_end(self, outputs: Any, batch: Any, batch_idx: int, dataloader_idx: int) -> None:
self.count_on_train_batch_end += 1
del self.trainer._lightning_optimizers
gc.collect() # not necessary, just in case

trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=4, limit_val_batches=1, max_epochs=1)
model = TestModel()
trainer.fit(model)
assert model.count_on_train_batch_start == 4
assert model.count_on_train_batch_end == 4