Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions pytorch_lightning/callbacks/progress.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,9 +149,10 @@ def total_val_batches(self) -> int:
validation dataloader is of infinite size.
"""
total_val_batches = 0
if not self.trainer.disable_validation:
is_val_epoch = (self.trainer.current_epoch) % self.trainer.check_val_every_n_epoch == 0
if self.trainer.enable_validation:
is_val_epoch = (self.trainer.current_epoch + 1) % self.trainer.check_val_every_n_epoch == 0
total_val_batches = sum(self.trainer.num_val_batches) if is_val_epoch else 0

return total_val_batches

@property
Expand Down
53 changes: 53 additions & 0 deletions tests/trainer/flags/test_check_val_every_n_epoch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest

from pytorch_lightning.trainer import Trainer
from pytorch_lightning.trainer.states import TrainerState
from tests.helpers import BoringModel


@pytest.mark.parametrize(
'max_epochs,expected_val_loop_calls,expected_val_batches', [
(1, 0, [0]),
(4, 2, [0, 2, 0, 2]),
(5, 2, [0, 2, 0, 2, 0]),
]
)
def test_check_val_every_n_epoch(tmpdir, max_epochs, expected_val_loop_calls, expected_val_batches):

class TestModel(BoringModel):
val_epoch_calls = 0
val_batches = []

def on_train_epoch_end(self, *args, **kwargs):
self.val_batches.append(self.trainer.progress_bar_callback.total_val_batches)

def on_validation_epoch_start(self) -> None:
self.val_epoch_calls += 1

model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=max_epochs,
num_sanity_val_steps=0,
limit_val_batches=2,
check_val_every_n_epoch=2,
logger=False,
)
trainer.fit(model)
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"

assert model.val_epoch_calls == expected_val_loop_calls
assert model.val_batches == expected_val_batches