Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -91,11 +91,13 @@ def check_dataloader_idx(self, result: Result) -> bool:
random_key = list(result.keys())[-1]
return result["meta"][random_key]["dataloader_idx"] is not None

def get_latest_from_func_name(self, latest_result, func_name: str, *args, **kwargs) -> Dict:
def get_latest_from_func_name(self, latest_result_opt, func_name: str, *args, **kwargs) -> Dict:
results = {}
add_dataloader_idx = self.check_dataloader_idx(latest_result)
func = getattr(latest_result, func_name)
results.update(func(*args, add_dataloader_idx=add_dataloader_idx, **kwargs))
for opt_idx in latest_result_opt:
latest_result = latest_result_opt[opt_idx]
add_dataloader_idx = self.check_dataloader_idx(latest_result)
func = getattr(latest_result, func_name)
results.update(func(*args, add_dataloader_idx=add_dataloader_idx, **kwargs))
return results

def run_latest_batch_metrics_with_func_name(self, func_name, *args, **kwargs) -> List[Dict]:
Expand Down Expand Up @@ -156,6 +158,7 @@ def append(self, result, dataloader_idx: Optional[int] = None, extra_info: Optio
assert isinstance(result, Result)
if dataloader_idx is None:
dataloader_idx = 0

if extra_info is None:
extra_info = {}

Expand All @@ -166,22 +169,27 @@ def append(self, result, dataloader_idx: Optional[int] = None, extra_info: Optio
if dataloader_idx not in self._internals:
self._internals[dataloader_idx] = {}
self._internals_reduced[dataloader_idx] = defaultdict(dict)
self._latest_ref[dataloader_idx] = {}

# extract infos
opt_idx = extra_info["opt_idx"]
batch_idx = extra_info["batch_idx"]

self._append_to_structure(self._internals[dataloader_idx], opt_idx, batch_idx, result)

self._latest_ref[dataloader_idx] = result
self._latest_ref[dataloader_idx][opt_idx] = result

# [dataloader_idx] is a list
else:
self._internal_type = ResultStoreType.OUTSIDE_BATCH_TRAIN_LOOP
self._internals.setdefault(dataloader_idx, [])
self._internals[dataloader_idx].append(result)

self._latest_ref[dataloader_idx] = result
if dataloader_idx not in self._latest_ref:
self._latest_ref[dataloader_idx] = {}
self._latest_ref[dataloader_idx][0] = {}

self._latest_ref[dataloader_idx][0] = result

def auto_reduce_results_on_epoch_end(self) -> None:
"""
Expand All @@ -206,13 +214,9 @@ def auto_reduce_results_on_epoch_end(self) -> None:
# TODO: How to start training in middle of epoch
opt_outputs = epoch_metrics[opt_idx]

num_batch_idx = len(self._internals[dl_idx][num_opt_idx]) - 1
assert num_batch_idx >= 0
batch_indexes = self._internals[dl_idx][num_opt_idx].keys()

# reduce across time first
time_reduced_outputs = []
for batch_idx in batch_indexes:
for batch_idx in opt_outputs.keys():
tbptt_outs = opt_outputs[batch_idx]
tbptt_outs = tbptt_outs[0].__class__.reduce_across_time(tbptt_outs)
if len(tbptt_outs) > 1:
Expand Down
63 changes: 63 additions & 0 deletions tests/trainer/optimization/test_multiple_optimizers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Tests to ensure that the behaviours related to multiple optimizers works
"""
import torch

import pytorch_lightning as pl
from tests.base.boring_model import BoringModel


def test_unbalanced_logging_with_multiple_optimizers(tmpdir):
"""
This tests ensures reduction works in un-balanced logging settings
"""
class TestModel(BoringModel):

loss_1 = []
loss_2 = []

def training_step(self, batch, batch_idx, optimizer_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
if optimizer_idx == 0 and self.trainer.global_step > 10:
self.log("loss_1", loss, on_epoch=True, prog_bar=True)
self.loss_1.append(loss.detach().clone())
elif optimizer_idx == 1:
self.log("loss_2", loss, on_epoch=True, prog_bar=True)
self.loss_2.append(loss.detach().clone())
return {"loss": loss}

def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.001)
optimizer2 = torch.optim.SGD(self.layer.parameters(), lr=0.001)
return [optimizer, optimizer2]

model = TestModel()
model.training_epoch_end = None

# Initialize a trainer
trainer = pl.Trainer(
default_root_dir=tmpdir,
max_epochs=1,
)

trainer.fit(model)

assert torch.equal(trainer.callback_metrics["loss_2_step"], model.loss_2[-1])
assert torch.equal(trainer.callback_metrics["loss_1_step"], model.loss_1[-1])
# test loss are properly reduced
assert torch.abs(trainer.callback_metrics["loss_2_epoch"] - torch.FloatTensor(model.loss_2).mean()) < 1e-6
assert torch.abs(trainer.callback_metrics["loss_1_epoch"] - torch.FloatTensor(model.loss_1).mean()) < 1e-6