Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion tests/backends/test_tpu_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,12 @@ def test_resume_training_on_cpu(tmpdir):
assert weight_tensor.device == torch.device("cpu")

# Verify that training is resumed on CPU
trainer = Trainer(resume_from_checkpoint=model_path, checkpoint_callback=True, max_epochs=1, default_root_dir=tmpdir)
trainer = Trainer(
resume_from_checkpoint=model_path,
checkpoint_callback=True,
max_epochs=1,
default_root_dir=tmpdir,
)
result = trainer.fit(model)

assert result == 1
Expand Down
3 changes: 1 addition & 2 deletions tests/callbacks/test_early_stopping.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,8 +56,7 @@ def test_resume_early_stopping_from_checkpoint(tmpdir):
early_stop_callback = EarlyStoppingTestRestore()
trainer = Trainer(
default_root_dir=tmpdir,
checkpoint_callback=checkpoint_callback,
callbacks=[early_stop_callback],
callbacks=[early_stop_callback, checkpoint_callback],
num_sanity_val_steps=0,
max_epochs=4,
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ def training_step(self, batch, batch_idx):

model = TestModel()
trainer = Trainer(
checkpoint_callback=callbacks.ModelCheckpoint(dirpath=tmpdir, monitor='my_loss', save_top_k=k),
callbacks=[callbacks.ModelCheckpoint(dirpath=tmpdir, monitor='my_loss', save_top_k=k)],
default_root_dir=tmpdir,
max_epochs=epochs,
weights_summary=None,
Expand Down
2 changes: 1 addition & 1 deletion tests/checkpointing/test_model_checkpoint.py
Original file line number Diff line number Diff line change
Expand Up @@ -897,7 +897,7 @@ def test_configure_model_checkpoint(tmpdir):
assert trainer.checkpoint_callbacks == [callback1, callback2]

with pytest.warns(DeprecationWarning, match='will no longer be supported in v1.3'):
trainer = Trainer(checkpoint_callback=callback1, callbacks=[], **kwargs)
trainer = Trainer(checkpoint_callback=callback1, **kwargs)
assert [c for c in trainer.callbacks if isinstance(c, ModelCheckpoint)] == [callback1]
assert trainer.checkpoint_callback == callback1

Expand Down
2 changes: 1 addition & 1 deletion tests/core/test_datamodules.py
Original file line number Diff line number Diff line change
Expand Up @@ -243,7 +243,7 @@ def test_dm_checkpoint_save(tmpdir):
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir, monitor='early_stop_on')
callbacks=[ModelCheckpoint(dirpath=tmpdir, monitor='early_stop_on')],
)

# fit model
Expand Down
2 changes: 1 addition & 1 deletion tests/models/data/horovod/train_default_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ def run_test_from_config(trainer_options):
reset_seed()

ckpt_path = trainer_options['weights_save_path']
trainer_options.update(checkpoint_callback=ModelCheckpoint(dirpath=ckpt_path))
trainer_options.update(callbacks=[ModelCheckpoint(dirpath=ckpt_path)])

model = EvalModelTemplate()

Expand Down
2 changes: 1 addition & 1 deletion tests/models/test_amp.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ def test_amp_gpu_ddp_slurm_managed(tmpdir):
gpus=[0],
accelerator='ddp_spawn',
precision=16,
checkpoint_callback=checkpoint,
callbacks=[checkpoint],
logger=logger,
)
trainer.is_slurm_managing_tasks = True
Expand Down
8 changes: 4 additions & 4 deletions tests/models/test_cpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ def test_cpu_slurm_save_load(enable_pl_optimizer, tmpdir):
logger=logger,
limit_train_batches=0.2,
limit_val_batches=0.2,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir),
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
enable_pl_optimizer=enable_pl_optimizer,
)
result = trainer.fit(model)
Expand Down Expand Up @@ -80,7 +80,7 @@ def test_cpu_slurm_save_load(enable_pl_optimizer, tmpdir):
default_root_dir=tmpdir,
max_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir),
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
enable_pl_optimizer=enable_pl_optimizer,
)
model = EvalModelTemplate(**hparams)
Expand Down Expand Up @@ -208,7 +208,7 @@ def test_running_test_after_fitting(tmpdir):
limit_train_batches=0.4,
limit_val_batches=0.2,
limit_test_batches=0.2,
checkpoint_callback=checkpoint,
callbacks=[checkpoint],
logger=logger,
)
result = trainer.fit(model)
Expand Down Expand Up @@ -239,7 +239,7 @@ def test_running_test_no_val(tmpdir):
limit_train_batches=0.4,
limit_val_batches=0.2,
limit_test_batches=0.2,
checkpoint_callback=checkpoint,
callbacks=[checkpoint],
logger=logger,
)
result = trainer.fit(model)
Expand Down
18 changes: 10 additions & 8 deletions tests/models/test_restore.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,7 +159,7 @@ def test_running_test_pretrained_model_distrib_dp(tmpdir):
max_epochs=2,
limit_train_batches=0.4,
limit_val_batches=0.2,
checkpoint_callback=checkpoint,
callbacks=[checkpoint],
logger=logger,
gpus=[0, 1],
accelerator='dp',
Expand Down Expand Up @@ -209,7 +209,7 @@ def test_running_test_pretrained_model_distrib_ddp_spawn(tmpdir):
max_epochs=2,
limit_train_batches=0.4,
limit_val_batches=0.2,
checkpoint_callback=checkpoint,
callbacks=[checkpoint],
logger=logger,
gpus=[0, 1],
accelerator='ddp_spawn',
Expand Down Expand Up @@ -257,7 +257,7 @@ def test_running_test_pretrained_model_cpu(tmpdir):
max_epochs=3,
limit_train_batches=0.4,
limit_val_batches=0.2,
checkpoint_callback=checkpoint,
callbacks=[checkpoint],
logger=logger,
default_root_dir=tmpdir,
)
Expand Down Expand Up @@ -288,7 +288,7 @@ def test_load_model_from_checkpoint(tmpdir, model_template):
max_epochs=2,
limit_train_batches=0.4,
limit_val_batches=0.2,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir, monitor='early_stop_on', save_top_k=-1),
callbacks=[ModelCheckpoint(dirpath=tmpdir, monitor='early_stop_on', save_top_k=-1)],
default_root_dir=tmpdir,
)

Expand Down Expand Up @@ -404,8 +404,10 @@ def test_model_saving_loading(tmpdir):

# fit model
trainer = Trainer(
max_epochs=1, logger=logger,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir), default_root_dir=tmpdir,
max_epochs=1,
logger=logger,
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
default_root_dir=tmpdir,
)
result = trainer.fit(model)

Expand Down Expand Up @@ -460,7 +462,7 @@ def test_strict_model_load_more_params(monkeypatch, tmpdir, tmpdir_server, url_c
# fit model
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=1, logger=logger,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir),
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
)
result = trainer.fit(model)

Expand Down Expand Up @@ -500,7 +502,7 @@ def test_strict_model_load_less_params(monkeypatch, tmpdir, tmpdir_server, url_c
# fit model
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=1, logger=logger,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir),
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
)
result = trainer.fit(model)

Expand Down
5 changes: 3 additions & 2 deletions tests/trainer/logging_tests/test_eval_loop_logging_1_0.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
from torch.utils.data import DataLoader, Dataset

from pytorch_lightning import Trainer, callbacks, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.loggers import TensorBoardLogger
from tests.base import BoringModel, RandomDataset, SimpleModule
Expand Down Expand Up @@ -291,7 +292,7 @@ def validation_epoch_end(self, outputs) -> None:
max_epochs=1,
log_every_n_steps=1,
weights_summary=None,
checkpoint_callback=callbacks.ModelCheckpoint(dirpath='val_loss')
callbacks=[ModelCheckpoint(dirpath='val_loss')],
)
trainer.fit(model)

Expand Down Expand Up @@ -358,7 +359,7 @@ def test_monitor_val_epoch_end(tmpdir):
trainer = Trainer(
max_epochs=epoch_min_loss_override + 2,
logger=False,
checkpoint_callback=checkpoint_callback,
callbacks=[checkpoint_callback],
)
trainer.fit(model)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@

import pytorch_lightning as pl
from pytorch_lightning import Trainer, callbacks
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.core.lightning import LightningModule
from tests.base.boring_model import BoringModel, RandomDictDataset, RandomDictStringDataset
from tests.base.deterministic_model import DeterministicModel
Expand Down Expand Up @@ -88,7 +89,7 @@ def backward(self, loss, optimizer, optimizer_idx):
max_epochs=2,
log_every_n_steps=1,
weights_summary=None,
checkpoint_callback=callbacks.ModelCheckpoint(monitor='l_se')
callbacks=[ModelCheckpoint(monitor='l_se')],
)
trainer.fit(model)

Expand Down
12 changes: 6 additions & 6 deletions tests/trainer/test_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def test_no_val_module(monkeypatch, tmpdir, tmpdir_server, url_ckpt):
default_root_dir=tmpdir,
max_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir),
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
)
# fit model
result = trainer.fit(model)
Expand Down Expand Up @@ -101,7 +101,7 @@ def test_no_val_end_module(monkeypatch, tmpdir, tmpdir_server, url_ckpt):
default_root_dir=tmpdir,
max_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir),
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
)
result = trainer.fit(model)

Expand Down Expand Up @@ -145,7 +145,7 @@ def test_strict_model_load(monkeypatch, tmpdir, tmpdir_server, url_ckpt):
default_root_dir=tmpdir,
max_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir),
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
)
result = trainer.fit(model)

Expand Down Expand Up @@ -462,7 +462,7 @@ def test_model_checkpoint_only_weights(tmpdir):
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir, monitor='early_stop_on', save_weights_only=True),
callbacks=[ModelCheckpoint(dirpath=tmpdir, monitor='early_stop_on', save_weights_only=True)],
)
# fit model
result = trainer.fit(model)
Expand Down Expand Up @@ -539,7 +539,7 @@ def increment_on_load_checkpoint(self, _):
max_epochs=2,
limit_train_batches=0.65,
limit_val_batches=1,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir, monitor='early_stop_on', save_top_k=-1),
callbacks=[ModelCheckpoint(dirpath=tmpdir, monitor='early_stop_on', save_top_k=-1)],
default_root_dir=tmpdir,
val_check_interval=1.0,
enable_pl_optimizer=enable_pl_optimizer,
Expand Down Expand Up @@ -718,7 +718,7 @@ def test_test_checkpoint_path(tmpdir, ckpt_path, save_top_k):
max_epochs=2,
progress_bar_refresh_rate=0,
default_root_dir=tmpdir,
checkpoint_callback=ModelCheckpoint(monitor="early_stop_on", save_top_k=save_top_k),
callbacks=[ModelCheckpoint(monitor="early_stop_on", save_top_k=save_top_k)],
)
trainer.fit(model)
if ckpt_path == "best":
Expand Down