Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

- Allow user to select individual TPU core to train on ([#1729](https://github.com/PyTorchLightning/pytorch-lightning/pull/1729))

- Removed non-finite values from loss in `LRFinder` ([#1862](https://github.com/PyTorchLightning/pytorch-lightning/pull/1862))

### Deprecated

### Removed
Expand Down
5 changes: 3 additions & 2 deletions pytorch_lightning/trainer/lr_finder.py
Original file line number Diff line number Diff line change
Expand Up @@ -321,8 +321,9 @@ def suggestion(self, skip_begin: int = 10, skip_end: int = 1):

"""
try:
loss = self.results["loss"][skip_begin:-skip_end]
min_grad = (np.gradient(np.array(loss))).argmin()
loss = np.array(self.results["loss"][skip_begin:-skip_end])
loss = loss[np.isfinite(loss)]
min_grad = np.gradient(loss).argmin()
self._optimal_idx = min_grad + skip_begin
return self.results["lr"][self._optimal_idx]
except Exception:
Expand Down
25 changes: 23 additions & 2 deletions tests/trainer/test_lr_finder.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,7 @@ def test_call_to_trainer_method(tmpdir):
# logger file to get meta
trainer = Trainer(
default_save_path=tmpdir,
max_epochs=5,
max_epochs=5
)

lrfinder = trainer.lr_find(model, mode='linear')
Expand Down Expand Up @@ -170,7 +170,7 @@ def test_suggestion_parameters_work(tmpdir):
# logger file to get meta
trainer = Trainer(
default_save_path=tmpdir,
max_epochs=10,
max_epochs=10
)

lrfinder = trainer.lr_find(model)
Expand All @@ -179,3 +179,24 @@ def test_suggestion_parameters_work(tmpdir):

assert lr1 != lr2, \
'Skipping parameter did not influence learning rate'


def test_suggestion_with_non_finite_values(tmpdir):
""" Test that non-finite values does not alter results """

hparams = EvalModelTemplate.get_default_hparams()
model = EvalModelTemplate(hparams)

# logger file to get meta
trainer = Trainer(
default_save_path=tmpdir,
max_epochs=10
)

lrfinder = trainer.lr_find(model)
before_lr = lrfinder.suggestion()
lrfinder.results['loss'][-1] = float('nan')
after_lr = lrfinder.suggestion()

assert before_lr == after_lr, \
'Learning rate was altered because of non-finite loss values'