Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,6 @@ warn_no_return = "False"
# the list can be generated with:
# mypy | tr ':' ' ' | awk '{print $1}' | sort | uniq | sed 's/\.py//g' | sed 's|\/|\.|g' | xargs -I {} echo '"{}",'
module = [
"pytorch_lightning.callbacks.finetuning",
"pytorch_lightning.callbacks.model_checkpoint",
"pytorch_lightning.callbacks.progress.rich_progress",
"pytorch_lightning.callbacks.quantization",
Expand Down
13 changes: 7 additions & 6 deletions src/pytorch_lightning/callbacks/finetuning.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,8 +32,8 @@
log = logging.getLogger(__name__)


def multiplicative(epoch):
return 2
def multiplicative(epoch: int) -> float:
return 2.0


class BaseFinetuning(Callback):
Expand Down Expand Up @@ -79,7 +79,7 @@ class BaseFinetuning(Callback):
... )
"""

def __init__(self):
def __init__(self) -> None:
self._internal_optimizer_metadata: Dict[int, List[Dict[str, Any]]] = {}
self._restarting = False

Expand All @@ -94,7 +94,7 @@ def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
self._internal_optimizer_metadata = state_dict["internal_optimizer_metadata"]
else:
# compatibility to load from old checkpoints before PR #11887
self._internal_optimizer_metadata = state_dict
self._internal_optimizer_metadata = state_dict # type: ignore[assignment]

def on_fit_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
# restore the param_groups created during the previous training.
Expand Down Expand Up @@ -122,10 +122,11 @@ def flatten_modules(modules: Union[Module, Iterable[Union[Module, Iterable]]]) -
modules = modules.values()

if isinstance(modules, Iterable):
_modules = []
_flatten_modules = []
for m in modules:
_modules.extend(BaseFinetuning.flatten_modules(m))
_flatten_modules.extend(BaseFinetuning.flatten_modules(m))

_modules = iter(_flatten_modules)
else:
_modules = modules.modules()

Expand Down