Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Deprecated the `precision_plugin` constructor argument from `Accelerator` ([#10570](https://github.com/PyTorchLightning/pytorch-lightning/pull/10570))


- Deprecated `DeviceType` in favor of `_AcceleratorType` ([#10503](https://github.com/PyTorchLightning/pytorch-lightning/pull/10503))


- Deprecated the property `Trainer.slurm_job_id` in favor of the new `SLURMEnvironment.job_id()` method ([#10622](https://github.com/PyTorchLightning/pytorch-lightning/pull/10622))


Expand Down
4 changes: 2 additions & 2 deletions pytorch_lightning/callbacks/gpu_stats_monitor.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@

import pytorch_lightning as pl
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.utilities import DeviceType, rank_zero_deprecation, rank_zero_only
from pytorch_lightning.utilities import _AcceleratorType, rank_zero_deprecation, rank_zero_only
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.parsing import AttributeDict
from pytorch_lightning.utilities.types import STEP_OUTPUT
Expand Down Expand Up @@ -126,7 +126,7 @@ def setup(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: O
if not trainer.logger:
raise MisconfigurationException("Cannot use GPUStatsMonitor callback with Trainer that has no logger.")

if trainer._device_type != DeviceType.GPU:
if trainer._device_type != _AcceleratorType.GPU:
raise MisconfigurationException(
"You are using GPUStatsMonitor but are not running on GPU"
f" since gpus attribute in Trainer is set to {trainer.gpus}."
Expand Down
4 changes: 2 additions & 2 deletions pytorch_lightning/callbacks/xla_stats_monitor.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
import time

from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.utilities import _TPU_AVAILABLE, DeviceType, rank_zero_deprecation, rank_zero_info
from pytorch_lightning.utilities import _AcceleratorType, _TPU_AVAILABLE, rank_zero_deprecation, rank_zero_info
from pytorch_lightning.utilities.exceptions import MisconfigurationException

if _TPU_AVAILABLE:
Expand Down Expand Up @@ -70,7 +70,7 @@ def on_train_start(self, trainer, pl_module) -> None:
if not trainer.logger:
raise MisconfigurationException("Cannot use XLAStatsMonitor callback with Trainer that has no logger.")

if trainer._device_type != DeviceType.TPU:
if trainer._device_type != _AcceleratorType.TPU:
raise MisconfigurationException(
"You are using XLAStatsMonitor but are not running on TPU"
f" since `tpu_cores` attribute in Trainer is set to {trainer.tpu_cores}."
Expand Down
10 changes: 5 additions & 5 deletions pytorch_lightning/lite/lite.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@
from pytorch_lightning.lite.wrappers import _LiteDataLoader, _LiteModule, _LiteOptimizer
from pytorch_lightning.plugins import DDPSpawnPlugin, DeepSpeedPlugin, PLUGIN_INPUT, TPUSpawnPlugin, TrainingTypePlugin
from pytorch_lightning.trainer.connectors.accelerator_connector import AcceleratorConnector
from pytorch_lightning.utilities import _StrategyType, DeviceType, move_data_to_device
from pytorch_lightning.utilities import _AcceleratorType, _StrategyType, move_data_to_device
from pytorch_lightning.utilities.apply_func import apply_to_collection, convert_to_tensors
from pytorch_lightning.utilities.data import (
_auto_add_worker_init_fn,
Expand Down Expand Up @@ -448,11 +448,11 @@ def _check_strategy_support(self, strategy: Optional[Union[str, TrainingTypePlug
)

@staticmethod
def _supported_device_types() -> Sequence[DeviceType]:
def _supported_device_types() -> Sequence[_AcceleratorType]:
return (
DeviceType.CPU,
DeviceType.GPU,
DeviceType.TPU,
_AcceleratorType.CPU,
_AcceleratorType.GPU,
_AcceleratorType.TPU,
)

@staticmethod
Expand Down
4 changes: 2 additions & 2 deletions pytorch_lightning/loops/optimization/optimizer_loop.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@
)
from pytorch_lightning.profiler import BaseProfiler, PassThroughProfiler
from pytorch_lightning.trainer.progress import OptimizationProgress
from pytorch_lightning.utilities import AMPType, DeviceType
from pytorch_lightning.utilities import _AcceleratorType, AMPType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.finite_checks import detect_nan_parameters
from pytorch_lightning.utilities.imports import _TPU_AVAILABLE
Expand Down Expand Up @@ -378,7 +378,7 @@ def _optimizer_step(
optimizer,
opt_idx,
train_step_and_backward_closure,
on_tpu=(self.trainer._device_type == DeviceType.TPU and _TPU_AVAILABLE),
on_tpu=(self.trainer._device_type == _AcceleratorType.TPU and _TPU_AVAILABLE),
using_native_amp=(self.trainer.amp_backend is not None and self.trainer.amp_backend == AMPType.NATIVE),
using_lbfgs=is_lbfgs,
)
Expand Down
98 changes: 49 additions & 49 deletions pytorch_lightning/trainer/connectors/accelerator_connector.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,10 +61,10 @@
TorchElasticEnvironment,
)
from pytorch_lightning.utilities import (
_AcceleratorType,
_StrategyType,
AMPType,
device_parser,
DeviceType,
rank_zero_deprecation,
rank_zero_info,
rank_zero_warn,
Expand Down Expand Up @@ -106,7 +106,7 @@ def __init__(
plugins,
):
# initialization
self._device_type = DeviceType.CPU
self._device_type = _AcceleratorType.CPU
self._distrib_type = None
self._accelerator_type = None

Expand Down Expand Up @@ -199,32 +199,32 @@ def _init_deterministic(self, deterministic: bool) -> None:
def select_accelerator_type(self) -> None:
if self.distributed_backend == "auto":
if self.has_tpu:
self._accelerator_type = DeviceType.TPU
self._accelerator_type = _AcceleratorType.TPU
elif self.has_ipu:
self._accelerator_type = DeviceType.IPU
self._accelerator_type = _AcceleratorType.IPU
elif self.has_gpu:
self._accelerator_type = DeviceType.GPU
self._accelerator_type = _AcceleratorType.GPU
else:
self._set_devices_to_cpu_num_processes()
self._accelerator_type = DeviceType.CPU
elif self.distributed_backend == DeviceType.TPU:
self._accelerator_type = _AcceleratorType.CPU
elif self.distributed_backend == _AcceleratorType.TPU:
if not self.has_tpu:
msg = "TPUs are not available" if not _TPU_AVAILABLE else "you didn't pass `tpu_cores` to `Trainer`"
raise MisconfigurationException(f"You passed `accelerator='tpu'`, but {msg}.")
self._accelerator_type = DeviceType.TPU
elif self.distributed_backend == DeviceType.IPU:
self._accelerator_type = _AcceleratorType.TPU
elif self.distributed_backend == _AcceleratorType.IPU:
if not self.has_ipu:
msg = "IPUs are not available" if not _IPU_AVAILABLE else "you didn't pass `ipus` to `Trainer`"
raise MisconfigurationException(f"You passed `accelerator='ipu'`, but {msg}.")
self._accelerator_type = DeviceType.IPU
elif self.distributed_backend == DeviceType.GPU:
self._accelerator_type = _AcceleratorType.IPU
elif self.distributed_backend == _AcceleratorType.GPU:
if not self.has_gpu:
msg = "you didn't pass `gpus` to `Trainer`" if torch.cuda.is_available() else "GPUs are not available"
raise MisconfigurationException(f"You passed `accelerator='gpu'`, but {msg}.")
self._accelerator_type = DeviceType.GPU
elif self.distributed_backend == DeviceType.CPU:
self._accelerator_type = _AcceleratorType.GPU
elif self.distributed_backend == _AcceleratorType.CPU:
self._set_devices_to_cpu_num_processes()
self._accelerator_type = DeviceType.CPU
self._accelerator_type = _AcceleratorType.CPU

if self.distributed_backend in self.accelerator_types:
self.distributed_backend = None
Expand All @@ -250,29 +250,29 @@ def _warn_if_devices_flag_ignored(self) -> None:
if self.devices is None:
return
devices_warning = f"The flag `devices={self.devices}` will be ignored, as you have set"
if self.distributed_backend in ("auto", DeviceType.TPU):
if self.distributed_backend in ("auto", _AcceleratorType.TPU):
if self.tpu_cores is not None:
rank_zero_warn(f"{devices_warning} `tpu_cores={self.tpu_cores}`")
elif self.distributed_backend in ("auto", DeviceType.IPU):
elif self.distributed_backend in ("auto", _AcceleratorType.IPU):
if self.ipus is not None:
rank_zero_warn(f"{devices_warning} `ipus={self.ipus}`")
elif self.distributed_backend in ("auto", DeviceType.GPU):
elif self.distributed_backend in ("auto", _AcceleratorType.GPU):
if self.gpus is not None:
rank_zero_warn(f"{devices_warning} `gpus={self.gpus}`")
elif self.distributed_backend in ("auto", DeviceType.CPU):
elif self.distributed_backend in ("auto", _AcceleratorType.CPU):
if self.num_processes != 1:
rank_zero_warn(f"{devices_warning} `num_processes={self.num_processes}`")

def _set_devices_if_none(self) -> None:
if self.devices is not None:
return
if self._accelerator_type == DeviceType.TPU:
if self._accelerator_type == _AcceleratorType.TPU:
self.devices = self.tpu_cores
elif self._accelerator_type == DeviceType.IPU:
elif self._accelerator_type == _AcceleratorType.IPU:
self.devices = self.ipus
elif self._accelerator_type == DeviceType.GPU:
elif self._accelerator_type == _AcceleratorType.GPU:
self.devices = self.gpus
elif self._accelerator_type == DeviceType.CPU:
elif self._accelerator_type == _AcceleratorType.CPU:
self.devices = self.num_processes

def _handle_accelerator_and_strategy(self) -> None:
Expand Down Expand Up @@ -386,7 +386,7 @@ def handle_given_plugins(self) -> None:

@property
def accelerator_types(self) -> List[str]:
return ["auto"] + list(DeviceType)
return ["auto"] + list(_AcceleratorType)

@property
def precision_plugin(self) -> PrecisionPlugin:
Expand Down Expand Up @@ -424,7 +424,7 @@ def has_cpu(self) -> bool:

@property
def use_cpu(self) -> bool:
return self._accelerator_type == DeviceType.CPU
return self._accelerator_type == _AcceleratorType.CPU

@property
def has_gpu(self) -> bool:
Expand All @@ -433,23 +433,23 @@ def has_gpu(self) -> bool:
gpus = self.parallel_device_ids
if gpus is not None and len(gpus) > 0:
return True
return self._map_devices_to_accelerator(DeviceType.GPU)
return self._map_devices_to_accelerator(_AcceleratorType.GPU)

@property
def use_gpu(self) -> bool:
return self._accelerator_type == DeviceType.GPU and self.has_gpu
return self._accelerator_type == _AcceleratorType.GPU and self.has_gpu

@property
def has_tpu(self) -> bool:
# Here, we are not checking for TPU availability, but instead if User has passed
# `tpu_cores` to Trainer for training.
if self.tpu_cores is not None:
return True
return self._map_devices_to_accelerator(DeviceType.TPU)
return self._map_devices_to_accelerator(_AcceleratorType.TPU)

@property
def use_tpu(self) -> bool:
return self._accelerator_type == DeviceType.TPU and self.has_tpu
return self._accelerator_type == _AcceleratorType.TPU and self.has_tpu

@property
def tpu_id(self) -> Optional[int]:
Expand All @@ -463,36 +463,36 @@ def has_ipu(self) -> bool:
# `ipus` to Trainer for training.
if self.ipus is not None or isinstance(self._training_type_plugin, IPUPlugin):
return True
return self._map_devices_to_accelerator(DeviceType.IPU)
return self._map_devices_to_accelerator(_AcceleratorType.IPU)

@property
def use_ipu(self) -> bool:
return self._accelerator_type == DeviceType.IPU and self.has_ipu
return self._accelerator_type == _AcceleratorType.IPU and self.has_ipu

def _set_devices_to_cpu_num_processes(self) -> None:
if self.num_processes == 1:
self._map_devices_to_accelerator(DeviceType.CPU)
self._map_devices_to_accelerator(_AcceleratorType.CPU)

def _map_devices_to_accelerator(self, accelerator: str) -> bool:
if self.devices is None:
return False
if accelerator == DeviceType.TPU and _TPU_AVAILABLE:
if accelerator == _AcceleratorType.TPU and _TPU_AVAILABLE:
if self.devices == "auto":
self.devices = TPUAccelerator.auto_device_count()
self.tpu_cores = device_parser.parse_tpu_cores(self.devices)
return True
if accelerator == DeviceType.IPU and _IPU_AVAILABLE:
if accelerator == _AcceleratorType.IPU and _IPU_AVAILABLE:
if self.devices == "auto":
self.devices = IPUAccelerator.auto_device_count()
self.ipus = self.devices
return True
if accelerator == DeviceType.GPU and torch.cuda.is_available():
if accelerator == _AcceleratorType.GPU and torch.cuda.is_available():
if self.devices == "auto":
self.devices = GPUAccelerator.auto_device_count()
self.gpus = self.devices
self.parallel_device_ids = device_parser.parse_gpu_ids(self.devices)
return True
if accelerator == DeviceType.CPU:
if accelerator == _AcceleratorType.CPU:
if self.devices == "auto":
self.devices = CPUAccelerator.auto_device_count()
if not isinstance(self.devices, int):
Expand Down Expand Up @@ -829,7 +829,7 @@ def set_distributed_mode(self, strategy: Optional[str] = None):
if isinstance(self.distributed_backend, Accelerator):
return

is_cpu_accelerator_type = self._accelerator_type and self._accelerator_type == DeviceType.CPU
is_cpu_accelerator_type = self._accelerator_type and self._accelerator_type == _AcceleratorType.CPU
_use_cpu = is_cpu_accelerator_type or self.distributed_backend and "cpu" in self.distributed_backend

if self.distributed_backend is None:
Expand Down Expand Up @@ -867,16 +867,16 @@ def set_distributed_mode(self, strategy: Optional[str] = None):
self.num_processes = os.cpu_count()
# special case with TPUs
elif self.has_tpu and not _use_cpu:
self._device_type = DeviceType.TPU
self._device_type = _AcceleratorType.TPU
if isinstance(self.tpu_cores, int):
self._distrib_type = _StrategyType.TPU_SPAWN
elif self.has_ipu and not _use_cpu:
self._device_type = DeviceType.IPU
self._device_type = _AcceleratorType.IPU
elif self.distributed_backend and self._distrib_type is None:
self._distrib_type = _StrategyType(self.distributed_backend)

if self.num_gpus > 0 and not _use_cpu:
self._device_type = DeviceType.GPU
self._device_type = _AcceleratorType.GPU

_gpu_distrib_types = (_StrategyType.DP, _StrategyType.DDP, _StrategyType.DDP_SPAWN, _StrategyType.DDP2)
# DP and DDP2 cannot run without GPU
Expand All @@ -896,13 +896,13 @@ def set_distributed_mode(self, strategy: Optional[str] = None):
self.check_interactive_compatibility()

# for DDP overwrite nb processes by requested GPUs
if self._device_type == DeviceType.GPU and self._distrib_type in (
if self._device_type == _AcceleratorType.GPU and self._distrib_type in (
_StrategyType.DDP,
_StrategyType.DDP_SPAWN,
):
self.num_processes = self.num_gpus

if self._device_type == DeviceType.GPU and self._distrib_type == _StrategyType.DDP2:
if self._device_type == _AcceleratorType.GPU and self._distrib_type == _StrategyType.DDP2:
self.num_processes = self.num_nodes

# Horovod is an extra case...
Expand Down Expand Up @@ -965,27 +965,27 @@ def has_horovodrun() -> bool:
def update_device_type_if_ipu_plugin(self) -> None:
# This allows the poptorch.Options that are passed into the IPUPlugin to be the source of truth,
# which gives users the flexibility to not have to pass `ipus` flag directly to Trainer
if isinstance(self._training_type_plugin, IPUPlugin) and self._device_type != DeviceType.IPU:
self._device_type = DeviceType.IPU
if isinstance(self._training_type_plugin, IPUPlugin) and self._device_type != _AcceleratorType.IPU:
self._device_type = _AcceleratorType.IPU

def update_device_type_if_training_type_plugin_passed(self) -> None:
if isinstance(self.strategy, TrainingTypePlugin) or any(
isinstance(plug, TrainingTypePlugin) for plug in self.plugins
):
if self._accelerator_type is not None:
if self.use_ipu:
self._device_type = DeviceType.IPU
self._device_type = _AcceleratorType.IPU
elif self.use_tpu:
self._device_type = DeviceType.TPU
self._device_type = _AcceleratorType.TPU
elif self.use_gpu:
self._device_type = DeviceType.GPU
self._device_type = _AcceleratorType.GPU
else:
if self.has_ipu:
self._device_type = DeviceType.IPU
self._device_type = _AcceleratorType.IPU
elif self.has_tpu:
self._device_type = DeviceType.TPU
self._device_type = _AcceleratorType.TPU
elif self.has_gpu:
self._device_type = DeviceType.GPU
self._device_type = _AcceleratorType.GPU

def _set_distrib_type_if_training_type_plugin_passed(self):
# This is required as when `TrainingTypePlugin` instance is passed to either `strategy`
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
from pytorch_lightning.plugins.environments.slurm_environment import SLURMEnvironment
from pytorch_lightning.trainer.connectors.logger_connector.result import _METRICS, _OUT_DICT, _PBAR_DICT
from pytorch_lightning.trainer.states import RunningStage, TrainerFn
from pytorch_lightning.utilities import DeviceType, memory
from pytorch_lightning.utilities import _AcceleratorType, memory
from pytorch_lightning.utilities.apply_func import apply_to_collection, move_data_to_device
from pytorch_lightning.utilities.metrics import metrics_to_scalars
from pytorch_lightning.utilities.warnings import rank_zero_deprecation
Expand Down Expand Up @@ -329,7 +329,7 @@ def gpus_metrics(self) -> Dict[str, float]:
.. deprecated:: v1.5
Will be removed in v1.7.
"""
if self.trainer._device_type == DeviceType.GPU and self.log_gpu_memory:
if self.trainer._device_type == _AcceleratorType.GPU and self.log_gpu_memory:
mem_map = memory.get_memory_profile(self.log_gpu_memory)
self._gpus_metrics.update(mem_map)
return self._gpus_metrics
Expand Down
Loading