Skip to content

gradient_clip_val+manual_backward isn't working on PL1.2.1 #6328

@okojoalg

Description

@okojoalg

🐛 Bug

After upgrading to pytorch-lightning 1.2.1, training with gradient_clip_val+manual_backward is broken. An error has occurred.

To Reproduce

import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
import pytorch_lightning as pl

class Model(pl.LightningModule):

    def __init__(self):
        super().__init__()
        self.automatic_optimization = False
        self.l1 = torch.nn.Linear(32*32*3, 10)

    def forward(self, x):
        x = x.view(x.size(0), -1)
        print(x.shape)
        x = F.softmax(self.l1(x))
        return x

    def training_step(self, batch, batch_idx):
        opt = self.optimizers()
        opt.zero_grad()
        x, y = batch
        y_hat = self(x)
        loss = F.cross_entropy(y_hat, y)
        self.manual_backward(loss, opt)
        opt.step()
        return self.l1(batch).sum()

    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters(), lr=1e-3)


def main():
    pl.seed_everything(42)
    transform = transforms.Compose([
        transforms.ToTensor(),
    ])
    dataset = CIFAR10(".", train=True, download=True, transform=transform)
    dataloader = DataLoader(dataset, batch_size=32, num_workers=2)

    model = Model()

    trainer_kwargs = {
        'gradient_clip_val': 0.5,
    }    
    trainer = pl.Trainer(**trainer_kwargs)
    trainer.fit(model, dataloader)


if __name__ == '__main__':
    main()

Regards,

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workinghelp wantedOpen to be worked onpriority: 1Medium priority taskwon't fixThis will not be worked on

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions