Skip to content

Learning rate scheduler's epoch off by one when resuming from checkpoint #1772

@lizhitwo

Description

@lizhitwo

🐛 Bug

Currently lr_scheduler's state is updated after the checkpoint callback, so what is being saved here is last epoch's state.

Note: I think this has the same fix as #1464, but I'm posting it here because (1) I got rekt by this again, (2) in case it's not the same bug, and (3) #1464 is not fixed.

To Reproduce

Steps to reproduce the behavior:
Install using pip install git+https://github.com/PytorchLightning/pytorch-lightning.git@master --upgrade

import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
import torchvision.transforms as transforms

import pytorch_lightning as pl

class CoolSystem(pl.LightningModule):

    def __init__(self):
        super(CoolSystem, self).__init__()
        # not the best model...
        self.l1 = torch.nn.Linear(28 * 28, 10)

    def forward(self, x):
        return torch.relu(self.l1(x.view(x.size(0), -1)))

    def training_step(self, batch, batch_nb):
        # REQUIRED
        x, y = batch
        y_hat = self.forward(x)
        return {'loss': F.cross_entropy(y_hat, y)}

    def validation_step(self, batch, batch_nb):
        # OPTIONAL
        x, y = batch
        y_hat = self.forward(x)
        return {'val_loss': F.cross_entropy(y_hat, y)}

    def validation_epoch_end(self, outputs):
        # OPTIONAL
        avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
        return {'val_loss': avg_loss}

    def configure_optimizers(self):
        # REQUIRED
        # can return multiple optimizers and learning_rate schedulers
        optimizer = torch.optim.Adam(self.parameters(), lr=0.02)
        return [optimizer], [torch.optim.lr_scheduler.MultiStepLR(optimizer, [100], gamma=0.1)]

    def train_dataloader(self):
        # REQUIRED
        return DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()), batch_size=32)

    def val_dataloader(self):
        # OPTIONAL
        return DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()), batch_size=32)

from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping

model = CoolSystem()

checkpoint_callback = ModelCheckpoint(
    filepath='./model_ckpt/whatever_the_name_is_gonna_be_auto_chosen',
    save_top_k=-1,
    verbose=True,
    monitor='val_loss',
    mode='auto'
)

early_stopping = EarlyStopping(
    monitor='val_loss',
    patience=5,
    verbose=True,
    mode='auto'
)

class PrintingCallback(pl.Callback):
    def on_epoch_start(self, trainer, pl_module):
        print('Scheduler epoch %d' % trainer.lr_schedulers[0]['scheduler'].last_epoch)
        print('Trainer epoch %d' % trainer.current_epoch)
        print('-'*80)

trainer = Trainer(max_nb_epochs=1000, train_percent_check=0.1, 
                  checkpoint_callback=checkpoint_callback, 
                  early_stop_callback=early_stopping,
                  callbacks=[PrintingCallback()])

trainer.fit(model)

Let the model train until convergence. And then reload a saved model and see how it continues:

trainer = Trainer(max_nb_epochs=1000, train_percent_check=0.1, 
                  checkpoint_callback=None, 
                  resume_from_checkpoint = 'model_ckpt/_ckpt_epoch_2.ckpt',
                  early_stop_callback=early_stopping,
                  callbacks=[PrintingCallback()])
trainer.fit(model)

The PrintingCallback would print:

Scheduler epoch 2
Trainer epoch 3
--------------------------------------------------------------------------------

Scheduler epoch 3
Trainer epoch 4
--------------------------------------------------------------------------------
...

and so on.

Expected behavior

The PrintingCallback should print:

Scheduler epoch 3
Trainer epoch 3
--------------------------------------------------------------------------------

Scheduler epoch 4
Trainer epoch 4
--------------------------------------------------------------------------------
...

Environment

This is ran on Google colab.
https://colab.research.google.com/drive/1pkCSMaApyjH40jwrdl4aQLVYjnGP3JzD?usp=sharing

Additional context

Related to #1463 and #1464.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workingduplicateThis issue or pull request already existshelp wantedOpen to be worked on

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions