Skip to content

Trainer runs indefinitely if fast_dev_run=True when iterating over self.logger #10201

@ritsuki1227

Description

@ritsuki1227

🐛 Bug

If you specify fast_dev_run=True and multiple loggers, and include a loop implementation over the LoggerCollection object for training, then the loop in the training runs indefinitely. If fast_dev_run=False, it runs correctly.

To Reproduce

A slightly modified version of the BoringModel script:

import os

import torch
from torch.utils.data import DataLoader, Dataset

from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.loggers import MLFlowLogger, TensorBoardLogger


class RandomDataset(Dataset):
    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return self.len


class BoringModel(LightningModule):
    def __init__(self):
        super().__init__()
        self.layer = torch.nn.Linear(32, 2)

    def forward(self, x):
        return self.layer(x)

    def training_step(self, batch, batch_idx):
        loss = self(batch).sum()
        self.log("train_loss", loss)
        return {"loss": loss}
    
    def on_train_end(self):
        # added
        print('foo')
        for logger in self.logger:
            print('bar')

    def validation_step(self, batch, batch_idx):
        loss = self(batch).sum()
        self.log("valid_loss", loss)

    def test_step(self, batch, batch_idx):
        loss = self(batch).sum()
        self.log("test_loss", loss)

    def configure_optimizers(self):
        return torch.optim.SGD(self.layer.parameters(), lr=0.1)


def run():
    train_data = DataLoader(RandomDataset(32, 64), batch_size=2)
    val_data = DataLoader(RandomDataset(32, 64), batch_size=2)
    test_data = DataLoader(RandomDataset(32, 64), batch_size=2)
    
    tb_logger = TensorBoardLogger(save_dir='foo') # added
    mlf_logger = MLFlowLogger() # added

    model = BoringModel()
    trainer = Trainer(
        default_root_dir=os.getcwd(),
        limit_train_batches=1,
        limit_val_batches=1,
        num_sanity_val_steps=0,
        max_epochs=1,
        # enable_model_summary=False,
        fast_dev_run=True, # added
        logger=[tb_logger, mlf_logger] # added
    )
    trainer.fit(model, train_dataloaders=train_data, val_dataloaders=val_data)
    trainer.test(model, dataloaders=test_data)


if __name__ == "__main__":
    run()

Expected behavior

The training finishes when fast_dev_run=True.

Environment

  • PyTorch Lightning Version (e.g., 1.3.0): 1.4.9
  • PyTorch Version (e.g., 1.8): 1.9.0+cu111
  • Python version: 3.9.6
  • OS (e.g., Linux): Ubuntu 18.04
  • CUDA/cuDNN version: CUDA: 11.1.1, cuDNN: 8.0.5
  • GPU models and configuration: NVIDIA Tesla T4
  • How you installed PyTorch (conda, pip, source): source
  • If compiling from source, the output of torch.__config__.show():
'PyTorch built with:\n  - GCC 7.3\n  - C++ Version: 201402\n  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications\n  - Intel(R) MKL-DNN v2.1.2 (Git Hash 98be7e8afa711dc9b66c8ff3504129cb82013cdb)\n  - OpenMP 201511 (a.k.a. OpenMP 4.5)\n  - NNPACK is enabled\n  - CPU capability usage: AVX2\n  - CUDA Runtime 11.1\n  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86\n  - CuDNN 8.0.5\n  - Magma 2.5.2\n  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.9.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, \n'
  • Any other relevant information:

Additional context

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workinghelp wantedOpen to be worked onloggerRelated to the Loggers

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions