|
| 1 | +# Copyright The PyTorch Lightning team. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +import os |
| 15 | +from contextlib import suppress |
| 16 | +from typing import Optional |
| 17 | + |
| 18 | +import torch |
| 19 | + |
| 20 | +from pytorch_lightning.cluster_environments.cluster_environment import ClusterEnvironment |
| 21 | +from pytorch_lightning.core.lightning import LightningModule |
| 22 | +from pytorch_lightning.plugins.training_type.ddp import DDPPlugin |
| 23 | +from pytorch_lightning.utilities import _RPC_AVAILABLE |
| 24 | + |
| 25 | +DEFAULT_RPC_TIMEOUT_SEC = 60. |
| 26 | +if _RPC_AVAILABLE: |
| 27 | + from torch.distributed import rpc |
| 28 | + with suppress(ModuleNotFoundError, ImportError): |
| 29 | + from torch.distributed.rpc.constants import DEFAULT_RPC_TIMEOUT_SEC |
| 30 | + |
| 31 | + |
| 32 | +class RPCPlugin(DDPPlugin): |
| 33 | + """ |
| 34 | + Backbone for RPC Plugins built on top of DDP. |
| 35 | + RPC introduces different communication behaviour than DDP. Unlike DDP, processes potentially are not |
| 36 | + required to run the same code as the main process. |
| 37 | + This leads to edge cases where logic needs to be re-defined. This class contains special cases |
| 38 | + that need to be addressed when using RPC communication when building custom RPC Plugins. |
| 39 | + """ |
| 40 | + |
| 41 | + def __init__( |
| 42 | + self, |
| 43 | + parallel_devices, |
| 44 | + num_nodes=1, |
| 45 | + cluster_environment: ClusterEnvironment = None, |
| 46 | + sync_batchnorm=False, |
| 47 | + rpc_timeout_sec: float = DEFAULT_RPC_TIMEOUT_SEC, |
| 48 | + **kwargs |
| 49 | + ): |
| 50 | + self.rpc_timeout_sec = rpc_timeout_sec |
| 51 | + self._is_rpc_initialized = False |
| 52 | + super().__init__( |
| 53 | + parallel_devices=parallel_devices, |
| 54 | + num_nodes=num_nodes, |
| 55 | + cluster_environment=cluster_environment, |
| 56 | + sync_batchnorm=sync_batchnorm, |
| 57 | + **kwargs |
| 58 | + ) |
| 59 | + |
| 60 | + def init_rpc_connection(self, global_rank: int, world_size: int) -> None: |
| 61 | + os.environ['MASTER_PORT'] = os.getenv('RPC_MASTER_PORT', '15000') |
| 62 | + rpc.init_rpc(f"worker{global_rank}", rank=global_rank, world_size=world_size) |
| 63 | + rpc._set_rpc_timeout(self.rpc_timeout_sec) |
| 64 | + self._is_rpc_initialized = True |
| 65 | + |
| 66 | + def rpc_save_model(self, save_model_fn, last_filepath, trainer, pl_module) -> None: |
| 67 | + """ |
| 68 | + Override to save model to disk. |
| 69 | + This is required as the main process will be required to handle aggregating model states from RPC processes. |
| 70 | +
|
| 71 | + Args: |
| 72 | + save_model_fn: The saving function to save final model. |
| 73 | + last_filepath: The filepath to save the model to. |
| 74 | + trainer: The trainer object. |
| 75 | + pl_module: The LightningModule. |
| 76 | + """ |
| 77 | + raise NotImplementedError |
| 78 | + |
| 79 | + def on_main_rpc_connection(self, trainer) -> None: |
| 80 | + """ |
| 81 | + Called when main rpc connection has been established. |
| 82 | +
|
| 83 | + Args: |
| 84 | + trainer: The trainer object. |
| 85 | + """ |
| 86 | + raise NotImplementedError |
| 87 | + |
| 88 | + def on_accelerator_exit_rpc_process(self) -> None: |
| 89 | + """ |
| 90 | + Called to exit RPC process within the accelerator, that is being managed by main process. |
| 91 | +
|
| 92 | + Args: |
| 93 | + trainer: The trainer object. |
| 94 | + """ |
| 95 | + self.exit_rpc_process() |
| 96 | + |
| 97 | + def exit_rpc_process(self): |
| 98 | + if self._is_rpc_initialized: |
| 99 | + torch.distributed.rpc.shutdown() |
| 100 | + self._is_rpc_initialized = False |
| 101 | + |
| 102 | + @property |
| 103 | + def return_after_exit_rpc_process(self) -> bool: |
| 104 | + """ |
| 105 | + Override to decide whether to skip train/test function after shutdown completed. |
| 106 | + Usually RPC shutdown is a join/exit function, afterwards we want to exit the process. |
| 107 | +
|
| 108 | + Returns: |
| 109 | + Whether to return after RPC exit. |
| 110 | + """ |
| 111 | + raise NotImplementedError |
| 112 | + |
| 113 | + def worker_optimizer_step(self, model: LightningModule, opt_idx: int, *args, **kwargs) -> None: |
| 114 | + """ |
| 115 | + Called when optimizer step is run on the main process. Used to signal any RPC workers to run optimizer step. |
| 116 | +
|
| 117 | + Args: |
| 118 | + model: The LightningModule. |
| 119 | + opt_idx: The idx of the optimizer to carry out step on. |
| 120 | + """ |
| 121 | + raise NotImplementedError |
| 122 | + |
| 123 | + @property |
| 124 | + def is_main_rpc_process(self) -> bool: |
| 125 | + """ |
| 126 | + Override to add logic to determine current process is main RPC process. |
| 127 | + """ |
| 128 | + raise NotImplementedError |
| 129 | + |
| 130 | + def barrier(self, name: Optional[str] = None) -> None: |
| 131 | + """ |
| 132 | + Override to define distributed sync communication. This needs to be handled differently due to |
| 133 | + the RPC connection managing certain processes at the same time. |
| 134 | + """ |
| 135 | + raise NotImplementedError |
0 commit comments