|
| 1 | +from abc import ABC |
| 2 | + |
| 3 | +from torch import optim |
| 4 | + |
| 5 | + |
| 6 | +class ConfigureOptimizersPool(ABC): |
| 7 | + def configure_optimizers(self): |
| 8 | + """ |
| 9 | + return whatever optimizers we want here. |
| 10 | + :return: list of optimizers |
| 11 | + """ |
| 12 | + optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate) |
| 13 | + return optimizer |
| 14 | + |
| 15 | + def configure_optimizers_empty(self): |
| 16 | + return None |
| 17 | + |
| 18 | + def configure_optimizers_lbfgs(self): |
| 19 | + """ |
| 20 | + return whatever optimizers we want here. |
| 21 | + :return: list of optimizers |
| 22 | + """ |
| 23 | + optimizer = optim.LBFGS(self.parameters(), lr=self.hparams.learning_rate) |
| 24 | + return optimizer |
| 25 | + |
| 26 | + def configure_optimizers_multiple_optimizers(self): |
| 27 | + """ |
| 28 | + return whatever optimizers we want here. |
| 29 | + :return: list of optimizers |
| 30 | + """ |
| 31 | + # try no scheduler for this model (testing purposes) |
| 32 | + optimizer1 = optim.Adam(self.parameters(), lr=self.hparams.learning_rate) |
| 33 | + optimizer2 = optim.Adam(self.parameters(), lr=self.hparams.learning_rate) |
| 34 | + return optimizer1, optimizer2 |
| 35 | + |
| 36 | + def configure_optimizers_single_scheduler(self): |
| 37 | + optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate) |
| 38 | + lr_scheduler = optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.1) |
| 39 | + return [optimizer], [lr_scheduler] |
| 40 | + |
| 41 | + def configure_optimizers_multiple_schedulers(self): |
| 42 | + optimizer1 = optim.Adam(self.parameters(), lr=self.hparams.learning_rate) |
| 43 | + optimizer2 = optim.Adam(self.parameters(), lr=self.hparams.learning_rate) |
| 44 | + lr_scheduler1 = optim.lr_scheduler.StepLR(optimizer1, 1, gamma=0.1) |
| 45 | + lr_scheduler2 = optim.lr_scheduler.StepLR(optimizer2, 1, gamma=0.1) |
| 46 | + |
| 47 | + return [optimizer1, optimizer2], [lr_scheduler1, lr_scheduler2] |
| 48 | + |
| 49 | + def configure_optimizers_mixed_scheduling(self): |
| 50 | + optimizer1 = optim.Adam(self.parameters(), lr=self.hparams.learning_rate) |
| 51 | + optimizer2 = optim.Adam(self.parameters(), lr=self.hparams.learning_rate) |
| 52 | + lr_scheduler1 = optim.lr_scheduler.StepLR(optimizer1, 4, gamma=0.1) |
| 53 | + lr_scheduler2 = optim.lr_scheduler.StepLR(optimizer2, 1, gamma=0.1) |
| 54 | + |
| 55 | + return [optimizer1, optimizer2], \ |
| 56 | + [{'scheduler': lr_scheduler1, 'interval': 'step'}, lr_scheduler2] |
| 57 | + |
| 58 | + def configure_optimizers_reduce_lr_on_plateau(self): |
| 59 | + optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate) |
| 60 | + lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer) |
| 61 | + return [optimizer], [lr_scheduler] |
0 commit comments