- Last update: Oct 2025
- Environment: Windows
- Compiler: Python and Conda distribution
- Prerequisite: Real-Time Distribution System version 3.2.1 and above, or Real-Time -- Optimized credentials, and MRN service
This project shows how developers may use the Real-Time WebSocket API aka Websocket API application to consume Machine Readable News Analytics (TRNA) data from the Real-Time Distribution System via Machine Readable News (MRN) domain. The example just connects to the Real-Time platform via a WebSocket connection, then subscribes and shows how to get each TRNA field data in a classic Jupyter Notebook application. The project is implemented with Python language, but the main concept for consuming and assembling MRN and TRNA messages are the same for all technologies.
You can find the full article regarding this project at How to get MRN News Analytics Data via WebSocket API page.
This example project supports all Machine Readable News (MRN) data consumption from Real-Time platform with the WebSocket API. However, the data model description is focusing on the News Analytics (TRNA) data processing only.
I highly recommend you check the WebSocket API Tutorials page if you are not familiar with WebSocket API. The Tutorials page provides a step-by-step guide (connect, log in, request data, parse data, etc) for developers who are interested in developing a WebSocket application to consume real-time data from the Real-Time platform.
If you are focusing on the Real-Time News, please check the following GitHub repositories
- LSEG-API-Samples/Example.WebSocketAPI.Python.MRN.
- LSEG-API-Samples/Example.WebSocketAPI.Python.MRN.RTO
Update (As of December 2021): The example now supports the Real-Time -- Optimized (RTO - formerly known as ERT in Cloud) connection.
- The RTO (Authentication V1 - Machine) examples:
- mrn_trna_console_rto.py console application file.
- Alternatively, please check my colleague's LSEG-API-Samples/Example.WebSocketAPI.Python.MRN.RTO GitHub Repository.
- mrn_trna_notebook_app_rto.ipynb notebook file.
- The deployed LSEG Real-Time Distribution System (RTDS) examples are mrn_console_app.py console application and mrn_notebook_app.ipynb notebook files.
The RTO examples are based on the Version 1 Authentication (Machine-ID). If you want to use the Version 2 Authentication (Service-ID), please check the following resources:
- Real-Time WebSocket API: The Real-Time Optimized Version 2 Authentication Migration Guide.
- Migrating the WebSocket Machine Readable News Application to Version 2 Authentication.
Machine Readable News Analytics (TRNA) provides real-time numerical insight into the events on multiple news sources, in a format that can be directly consumed by algorithmic trading systems. TRNA enables algorithms to exploit the power of news to seize opportunities, capitalize on market inefficiencies, and manage event risk.
TRNA is published via the Real-Time Platform as part of Machine Readable News (MRN) data model. MRN is an advanced service for automating the consumption and systematic analysis of news. It delivers deep historical news archives, ultra-low latency structured news, and news analytics directly to your applications.
MRN is published over the Real-Time Platform using an Open Message Model (OMM) envelope in News Text Analytics domain messages. The Real-time News content set is made available over MRN_STORY RIC. The content data is contained in a FRAGMENT field that has been compressed and potentially fragmented across multiple messages, to reduce bandwidth and message size.
A FRAGMENT field has a different data type based on a connection type:
The data goes through the following series of transformations:
- The core content data is a UTF-8 JSON string
- This JSON string is compressed using gzip
- The compressed JSON is split into several fragments (BUFFER or Base64 ASCII string) which each fit into a single update message
- The data fragments are added to an update message as the FRAGMENT field value in a FieldList envelope
Therefore, to parse the core content data, the application will need to reverse this process. The WebSocket application also needs to convert a received Base64 string in a FRAGMENT field to bytes data before further process this field. This application uses Python base64 and zlib modules to decode Base64 string and decompress JSON string.
If you are not familiar with MRN concept, please visit the following resources which will give you a full explanation of the MRN data model and implementation logic:
- Webinar Recording: Introduction to Machine Readable News
- Introduction to Machine Readable News (MRN) with Enterprise Message API (EMA).
- MRN Data Models and Real-Time SDK Implementation Guide.
- Introduction to Machine Readable News with WebSocket API.
This example requires the following dependencies software and libraries.
- The Real-Time Advanced Data Hub (ADH) and Real-Time Advanced Distribution Server (ADS) version 3.2.x with WebSocket connection and MRN Service.
- Python interpreter and runtime.
- Python Anaconda or MiniConda distribution/package manager.
- JupyterLab web application.
- RTO Access credentials for the RTO example.
- Internet connection.
- Docker Desktop/Engine version 20.10.x and DockerHub account (free subscription) or Podman.
Note:
- This Project has been qualified with Python version 3.11
- If you are not familiar with Jupyter Notebook, the following tutorial created by DataCamp may help.
- It is not advisable to change the Real-Time Distribution System configuration if you are not familiar with the configuration procedures. Please consult your Market Data administrator for any questions regarding Real-Time Distribution System-MRN service configuration.
- Please contact your LSEG representative to help you to access the RTO account, and services. You can find more detail regarding the RTO access credentials set up from the Getting Started for Machine ID section of the Getting Start with Data Platform article article.
- Please refer to the pip installation guide page if your environment does not have the pip tool installed.
This example project contains the following files and folders
- notebook_python/mrn_trna_notebook_app.ipynb: The example Jupyter Notebook application for the deployed RTDS connection file
- notebook_python/mrn_trna_notebook_app_rto.ipynb: The example Jupyter Notebook application for the RTO connection file
- notebook_python/.env.example: The example
.envfile for the RTO connection notebook. - console/mrn_trna_console_app.py: The example console application for the deployed RTDS connection file
- console/mrn_trna_console_rto.py: The example console application for the RTO connection file
- console/.env.example: The example
.envfile for the RTO connection console application. - requirements.txt: The basic dependencies configuration file
- requirements_notebook.txt: The jupyter dependencies configuration file
- Dockerfile: The RTO console application Dockerfile
- LICENSE.md: Project's license file
- README.md: Project's README file
- .gitignore and .dockerignore: Docker and Git ignore files.
The first step is to unzip or download the example project folder into a directory of your choice, then choose how to run the application based on your environment below.
It is an advisable to create a dedicate Python environment to run each Python project. You can create a new Conda environment names MRN_TRNA with the following steps
- Open Anaconda Prompt and go to the project's folder
- Run the following command in an Anaconda Prompt to create a Conda environment named MRN_TRNA for the project.
(base) $>conda create --name MRN_TRNA python=3.11
- Once the environment is created, activate MRN_TRNA environment with this command in Anaconda Prompt
(base) $>conda activate MRN_TRNA
- Run the following command to install the dependencies in the MRN_TRNA environment
(MRN_TRNA) $>pip install -r requirements.txt
Please be informed that your Real-Time Advanced Data Hub and Real-Time Advanced Distribution Server should have a Service that contains MRN data.
- Open Anaconda Prompt and go to the project's folder
- Activate MRN_TRNA environment with this command in Anaconda Prompt
(base) $>conda activate MRN_TRNA
- Run the following command to install the JupyterLab application in the MRN_TRNA environment
(MRN_TRNA) $>pip install -r requirements_notebook.txt
- In the current Anaconda Prompt, go to the project's notebook folder. Run the following command to start the JupyterLab application in the notebook folder.
(MRN_TRNA) $>jupyter lab
- Open mrn_trna_notebook_app.ipynb Notebook document, then follow through each notebook cell.
Please be informed that your Real-Time Advanced Data Hub and Real-Time Advanced Distribution Server should have a Service that contains MRN data.
- Open Anaconda Prompt and go to the project's folder
- Activate MRN_TRNA environment with this command in Anaconda Prompt
(base) $>conda activate MRN_TRNA
- Then you can run mrn_trna_console_app.py application with the following command
(MRN_TRNA) $> python console/mrn_trna_console_app.py --hostname <Real-Time Advanced Distribution Server IP Address/Hostname> --port <WebSocket Port>
- The application subscribes
MRN_TRNARIC code from Real-Time Advanced Distribution Server by default.
Please be informed that your RTO access credentials should have a permission to request MRN data.
- Open Anaconda Prompt and go to the project's folder
- Activate MRN_TRNA environment with this command in Anaconda Prompt
(base) $>conda activate MRN_TRNA
- Run the following command to install the JupyterLab application in the MRN_TRNA environment
(MRN_TRNA) $>pip install -r requirements_notebook.txt
- Go to the project's notebook folder. and create a file name
.envwith the following content.
# RTO Credentials
RTO_USERNAME=<Your RTO Machine-ID>
RTO_PASSWORD=<Your RTO Password>
RTO_CLIENTID=<Your RTO App Key>
# RDP-RTO Core Configurations
RDP_BASE_URL=https://api.refinitiv.com
RDP_AUTH_URL=/auth/oauth2/v1/token
RDP_DISCOVERY_URL=/streaming/pricing/v1/
- In the current Anaconda Prompt notebook folder. Run the following command to start the JupyterLab application in the notebook folder.
(MRN_TRNA) $>jupyter lab
- Open mrn_trna_notebook_app_rto.ipynb Notebook document, then follow through each notebook cell.
Please be informed that your RTO access credentials should have a permission to request MRN data.
- Open Anaconda Prompt and go to the project's folder
- Activate MRN_TRNA environment with this command in Anaconda Prompt
(base) $>conda activate MRN_TRNA
- Go to the project's console folder. and create a file name
.envwith the following content.
# RTO Credentials
RTO_USERNAME=<Your RTO Machine-ID>
RTO_PASSWORD=<Your RTO Password>
RTO_CLIENTID=<Your RTO App Key>
# RDP-RTO Core Configurations
RDP_BASE_URL=https://api.refinitiv.com
RDP_AUTH_URL=/auth/oauth2/v1/token
RDP_DISCOVERY_URL=/streaming/pricing/v1/
- Then you can run mrn_trna_console_rto.py application with the following command
(MRN_TRNA) $>python console/mrn_trna_console_rto.py --ric <MRN_TRNA RIC code by default>
Alternatively, please check my colleague's LSEG-API-Samples/Example.WebSocketAPI.Python.MRN.RTO GitHub Repository.
Please be informed that your RTO access credentials should have a permission to request MRN data.
- Go to the project folder in a console and create a file name
.envin aconsolefolder with the following content.
# RTO Credentials
RTO_USERNAME=<Your RTO Machine-ID>
RTO_PASSWORD=<Your RTO Password>
RTO_CLIENTID=<Your RTO App Key>
# RDP-RTO Core Configurations
RDP_BASE_URL=https://api.refinitiv.com
RDP_AUTH_URL=/auth/oauth2/v1/token
RDP_DISCOVERY_URL=/streaming/pricing/v1/
- Run
$> docker build -t <project tag name> .command in a console to build an image from a Dockerfile.
$> docker build -t rto_ws_mrn_python .
- Once the build is a success, you can create and run the container with the following command
$> docker run --name mrn_console -it --env-file ./console/.env rto_ws_mrn_python --ric <MRN_TRNA RIC code by default>
- Press Ctrl+C buttons to stop the application
SENT:
{
"Domain":"NewsTextAnalytics",
"ID":2,
"Key":{
"Name":"MRN_TRNA"
}
}
RECEIVED:
[
{
"Domain":"NewsTextAnalytics",
"Fields":{
"ACTIV_DATE":"1970-01-01",
"CONTEXT_ID":3929,
"DDS_DSO_ID":12424,
"FRAGMENT":null,
"FRAG_NUM":0,
"GUID":null,
"MRN_SRC":"4.1.3_na_ent0-c383quja1adtc",
"MRN_TYPE":null,
"MRN_V_MAJ":null,
"MRN_V_MIN":null,
"PROD_PERM":10002,
"RDN_EXCHD2":"MRN",
"RECORDTYPE":30,
"SPS_SP_RIC":".[SPSMANL1",
"TIMACT_MS":0,
"TOT_SIZE":0
},
"ID":2,
"Key":{
"Name":"MRN_TRNA",
"Service":"API_RDF"
},
"PermData":"Ax+yEAAs",
"Qos":{
"Rate":"TickByTick",
"Timeliness":"Realtime"
},
"SeqNumber":35024,
"State":{
"Data":"Ok",
"Stream":"Open",
"Text":"All is well"
},
"Type":"Refresh"
}
]
RECEIVED:
[
{
"DoNotCache":true,
"DoNotConflate":true,
"Domain":"NewsTextAnalytics",
"Fields":{
"ACTIV_DATE":"2020-02-12",
"FRAGMENT":"H4sIAAAAAAAA/81V3XPaOBD/Vxi/lmRkAYX4zV9QUmwc2w3p3dx0hK0QBduisoHSDv97V5IppJPmZu7p/LD6eb+kXe2ufhikIsWhYVltWD/OP0nGBQXW38Cra9q4BSyGZbhBFH42ui2T50rHiKw+vhkhNBxiBMLYms+D5HoeGP+0mtMcbF/oKHZISgqCeUmqzpwVnYCINW1Yteq4vJPY8wkoLgVfU2FnDeMV6H4KPX88DX0PRI9M1E1AKylKYKFVBu7MrlGwak3zaa4DYHnEa6bt0VkIzhphjRchtl00mH3BCGETm2VV7T1W3zvpfhIHvuMt5jh+ekia5cNyVHs9hm6f18YRIqv4jhbNweXbqml3amipftUp9qzK+R62MfEH49j9oxj33xT3vLekgzelQ0+ddCNYRlMiVnATVc4y0nDxWy4FLeiO6AReI/l1jVqmtgTS3r55wQrpijRsB+roGvUxHmL8QrptBCmk0MSj/qB3IdOXoS1H+AYPBxfCBRd5G0e/3zV2vNiW9H+fYVUNdF9PQUe20ZLnh4R9hxAxhtAzXm5IdThb02/ZE6lW9NWqfqIkhxqF+1qBxImn/hi4pWoNl5cyS0QcDOuRFDXVqZOF33qHZO7PORzgI2gcajjXPRW13ixNrD5C75FpYogM2uP1TsDO8p0z4ruHcvjcG9ki9t6/C2+/Reh2PD087u8+fjezxY3xMvKcNCQ9bGRXh8CWTUppPiYlKw5yXKitLoI8RXj1ygxwOBF5JxJ8w2tad8afOx7bsZxWeQc8FJDALVlJD7SSCaINkburMVboiVP9iklOnG3OZKLUxAojywceLJNxqEGUuBrEYaSBdwKRO5ejTIaSQpnWDSk3sqwQRlcIX5k4RX1rgKweuh4i9NdpNLmCkobmf9BEWpPVtsieVD+0N9qQNU3o1207zo6yf7kMXPZsmFhxGidgWPOtyKiK8z9fnfbxbzG1J623y2eaqUY0Aks9A4ElBb4lK3RimYreKTp0YHGskaImMpECWFPzRq0DZWsqOlFW2s8HRT8qmrx4T7q/PzWBZd7Jpgmx5cxiDU5vFEBveq+BH8QTjQLfTlINlUNYY+i9MzJbi3A8PiG/9Tyfzlovju2mJ5NEg3Qyaw2ShZ1MbY0v0UNkuxrP/FAW1BYmcpVBL/eOx5+IdgrvigcAAA==",
"FRAG_NUM":1,
"GUID":"tr:FWN2AC05L_2002122Bb+B8ovXm7j38ArRD6+NJxP0JFIyfwQKz1cW9",
"MRN_SRC":"C383QUJA1ADTC-4.0.6_TRNA-C383QUJA1ADTC",
"MRN_TYPE":"TRNA",
"MRN_V_MAJ":"2",
"MRN_V_MIN":"10",
"TIMACT_MS":17430856,
"TOT_SIZE":886
},
"ID":2,
"Key":{
"Name":"MRN_TRNA",
"Service":"API_RDF"
},
"PermData":"Ax+yEAAqEAEKEAILEAIqEAQLEAQrEARbEAZKEBAaEBGbEBIaECMLECYrECY7ECiLEDEM",
"SeqNumber":35056,
"Type":"Update",
"UpdateType":"Unspecified"
}
]
FRAGMENT length = 886
decompress News FRAGMENT(s) for GUID tr:FWN2AC05L_2002122Bb+B8ovXm7j38ArRD6+NJxP0JFIyfwQKz1cW9
News = {'analytics': {'analyticsScores': [{'assetClass': 'CMPNY', 'assetCodes': ['P:4298007720', 'R:OOMS.OM'], 'assetId': '4298007720', 'assetName': 'Oman Oil Marketing Co SAOG', 'brokerAction': 'UNDEFINED', 'firstMentionSentence': 1, 'linkedIds': [{'idPosition': 0, 'linkedId': 'tr:FWN2AC05L_2002121mnnwDisVBTwGRMEBDWO2RhXStbXb8sD3i0Jjk'}],
'noveltyCounts': [{'itemCount': 1, 'window': '12H'}, {'itemCount': 1, 'window': '24H'}, {'itemCount': 1, 'window': '3D'}, {'itemCount': 1, 'window': '5D'}, {'itemCount': 1, 'window': '7D'}], 'priceTargetIndicator': 'UNDEFINED', 'relevance': 1.0, 'sentimentClass': 1, 'sentimentNegative': 0.0422722, 'sentimentNeutral': 0.128453, 'sentimentPositive': 0.829275, 'sentimentWordCount': 44,
'volumeCounts': [{'itemCount': 1, 'window': '12H'}, {'itemCount': 1, 'window': '24H'}, {'itemCount': 1, 'window': '3D'},
{'itemCount': 1, 'window': '5D'}, {'itemCount': 1, 'window': '7D'}]}], 'newsItem': {'bodySize': 223, 'companyCount': 1, 'exchangeAction': 'UNDEFINED', 'headlineTag': 'BRIEF', 'marketCommentary': False, 'sentenceCount': 5, 'wordCount': 52},
'systemVersion': 'TS:40060112'}, 'id': 'tr:FWN2AC05L_2002122Bb+B8ovXm7j38ArRD6+NJxP0JFIyfwQKz1cW9', 'newsItem':
{'dataType': 'News', 'feedFamilyCode': 'tr', 'headline': 'BRIEF-Oman Oil Marketing Board Proposes FY Dividend ', 'language': 'en', 'metadata': {'altId': 'nFWN2AC05L', 'audiences': ['NP:E', 'NP:GFN', 'NP:PSC', 'NP:RNP', 'NP:DNP', 'NP:PCO'],
'feedTimestamp': '2020-02-12T04:50:30.700Z', 'firstCreated': '2020-02-12T04:50:30.000Z', 'isArchive': False, 'takeSequence': 1}, 'provider': 'NS:RTRS', 'sourceId': 'FWN2AC05L_2002122Bb+B8ovXm7j38ArRD6+NJxP0JFIyfwQKz1cW9',
'sourceTimestamp': '2020-02-12T04:50:30.000Z', 'subjects': ['M:NY', 'M:Z', 'E:F', 'G:1', 'G:Q',
'G:7B', 'B:8', 'B:1010', 'B:2', 'B:219', 'B:5', 'E:1', 'E:G', 'G:F', 'G:H', 'G:K', 'G:S',
'R:OOMS.OM', 'P:4298007720', 'M:1QD', 'N2:BLR', 'N2:CMPNY', 'N2:DIV', 'N2:EMRG', 'N2:MEAST',
'N2:OM', 'N2:REFI', 'N2:REFI1', 'N2:ENFF', 'N2:ENER', 'N2:OILG', 'N2:BACT', 'N2:RES', 'N2:TGLF',
'N2:SWASIA', 'N2:ASIA', 'N2:ASXPAC', 'N2:LEN'], 'urgency': 3}}
For further details, please check out the following resources:
- LSEG Real-Time products family page on the LSEG Developers Community website.
- WebSocket API page.
- Developer Webinar Recording: Introduction to Electron WebSocket API.
- News Analytics Product page.
- Introduction to Machine Readable News with WebSocket API.
- Introduction to Machine Readable News (MRN) with Enterprise Message API (EMA).
- MRN Data Models and Real-Time SDK Implementation Guide.
- MRN (Real-Time News) WebSocket Python example on GitHub.
- MRN (Real-Time News) WebSocket Python Console example on GitHub
- MRN WebSocket JavaScript example on GitHub.
- MRN WebSocket C# NewsViewer example on GitHub.
- Real-Time WebSocket API: The Real-Time Optimized Version 2 Authentication Migration Guide.
- Migrating the WebSocket Machine Readable News Application to Version 2 Authentication.
For any question related to this example or WebSocket API, please use the Developer Community Q&A Forum.
