Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 29 additions & 10 deletions base/dft.jl
Original file line number Diff line number Diff line change
Expand Up @@ -20,22 +20,41 @@ export fft, ifft, bfft, fft!, ifft!, bfft!,
plan_fft, plan_ifft, plan_bfft, plan_fft!, plan_ifft!, plan_bfft!,
rfft, irfft, brfft, plan_rfft, plan_irfft, plan_brfft

complexfloat{T<:AbstractFloat}(x::AbstractArray{Complex{T}}) = x
typealias FFTWFloat Union{Float32,Float64}
fftwfloat(x) = _fftwfloat(float(x))
_fftwfloat{T<:FFTWFloat}(::Type{T}) = T
_fftwfloat(::Type{Float16}) = Float32
_fftwfloat{T}(::Type{T}) = error("type $T not supported")
_fftwfloat{T}(x::T) = _fftwfloat(T)(x)

complexfloat{T<:FFTWFloat}(x::StridedArray{Complex{T}}) = x
realfloat{T<:FFTWFloat}(x::StridedArray{T}) = x

# return an Array, rather than similar(x), to avoid an extra copy for FFTW
# (which only works on StridedArray types).
complexfloat{T<:Complex}(x::AbstractArray{T}) = copy!(Array{typeof(float(one(T)))}(size(x)), x)
complexfloat{T<:AbstractFloat}(x::AbstractArray{T}) = copy!(Array{typeof(complex(one(T)))}(size(x)), x)
complexfloat{T<:Real}(x::AbstractArray{T}) = copy!(Array{typeof(complex(float(one(T))))}(size(x)), x)
complexfloat{T<:Complex}(x::AbstractArray{T}) = copy1(typeof(fftwfloat(one(T))), x)
complexfloat{T<:Real}(x::AbstractArray{T}) = copy1(typeof(complex(fftwfloat(one(T)))), x)

realfloat{T<:Real}(x::AbstractArray{T}) = copy1(typeof(fftwfloat(one(T))), x)

# copy to a 1-based array, using circular permutation
function copy1{T}(::Type{T}, x)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't understand why it would be necessary to make a copy. FFTW doesn't care how Julia indexes the array, as long as the data is strided. It should be possible to make it work with any DenseArray (i.e. supporting pointer and strides) without copying.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Mathematical consistency. As you know better than almost anyone, here's the formula:

FFT(x)[k] = \sum_{n=1}^N x[n] exp(-2\pi (n-1)(k-1)/N)

x[n] is to be interpreted with periodic boundary conditions.

That summation range actually means something, and 1 is not synonymous with "the first value." If my array is defined over -1:5, it's equivalent to it being defined over 1:7 but you need to circularly-permute the values. Nothing else makes any sense.

Incidentally, this makes array-padding---extending the indices in either direction---an absolute dream. No more index gymnastics necessary.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

BTW, I do think we are a bit confused about DenseArray vs StridedArray: if DenseArray means it supports pointer and strides, what exactly does StridedArray mean?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You're right, I meant StridedArray.

I see your point, you want the indexing to define the "origin" (the phase offset) of the DFT.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Note that you could still do it without making a copy by multiplying the output by an appropriate phase. It's probably more expensive than a copy, though.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In my tests, it was.

y = Array{T}(map(length, indices(x)))
Base.circcopy!(y, x)
end

to1(x::AbstractArray) = _to1(indices(x), x)
_to1(::Tuple{Base.OneTo,Vararg{Base.OneTo}}, x) = x
_to1(::Tuple, x) = copy1(eltype(x), x)

# implementations only need to provide plan_X(x, region)
# for X in (:fft, :bfft, ...):
for f in (:fft, :bfft, :ifft, :fft!, :bfft!, :ifft!, :rfft)
pf = Symbol("plan_", f)
@eval begin
$f(x::AbstractArray) = $pf(x) * x
$f(x::AbstractArray, region) = $pf(x, region) * x
$pf(x::AbstractArray; kws...) = $pf(x, 1:ndims(x); kws...)
$f(x::AbstractArray) = (y = to1(x); $pf(y) * y)
$f(x::AbstractArray, region) = (y = to1(x); $pf(y, region) * y)
$pf(x::AbstractArray; kws...) = (y = to1(x); $pf(y, 1:ndims(y); kws...))
end
end

Expand Down Expand Up @@ -187,11 +206,11 @@ for f in (:fft, :bfft, :ifft)
$pf{T<:Union{Integer,Rational}}(x::AbstractArray{Complex{T}}, region; kws...) = $pf(complexfloat(x), region; kws...)
end
end
rfft{T<:Union{Integer,Rational}}(x::AbstractArray{T}, region=1:ndims(x)) = rfft(float(x), region)
plan_rfft{T<:Union{Integer,Rational}}(x::AbstractArray{T}, region; kws...) = plan_rfft(float(x), region; kws...)
rfft{T<:Union{Integer,Rational}}(x::AbstractArray{T}, region=1:ndims(x)) = rfft(realfloat(x), region)
plan_rfft(x::AbstractArray, region; kws...) = plan_rfft(realfloat(x), region; kws...)

# only require implementation to provide *(::Plan{T}, ::Array{T})
*{T}(p::Plan{T}, x::AbstractArray) = p * copy!(Array{T}(size(x)), x)
*{T}(p::Plan{T}, x::AbstractArray) = p * copy1(T, x)

# Implementations should also implement A_mul_B!(Y, plan, X) so as to support
# pre-allocated output arrays. We don't define * in terms of A_mul_B!
Expand Down
1 change: 1 addition & 0 deletions base/exports.jl
Original file line number Diff line number Diff line change
Expand Up @@ -489,6 +489,7 @@ export
cat,
checkbounds,
checkindex,
circcopy!,
circshift,
circshift!,
clamp!,
Expand Down
78 changes: 78 additions & 0 deletions base/multidimensional.jl
Original file line number Diff line number Diff line change
Expand Up @@ -645,6 +645,22 @@ See also `circshift`.
end
circshift!(dest::AbstractArray, src, shiftamt) = circshift!(dest, src, (shiftamt...,))

# For each dimension, we copy the first half of src to the second half
# of dest, and the second half of src to the first half of dest. This
# uses a recursive bifurcation strategy so that these splits can be
# encoded by ranges, which means that we need only one call to `mod`
# per dimension rather than one call per index.
# `rdest` and `rsrc` are tuples-of-ranges that grow one dimension at a
# time; when all the dimensions have been filled in, you call `copy!`
# for that block. In other words, in two dimensions schematically we
# have the following call sequence (--> means a call):
# circshift!(dest, src, shiftamt) -->
# _circshift!(dest, src, ("first half of dim1",)) -->
# _circshift!(dest, src, ("first half of dim1", "first half of dim2")) --> copy!
# _circshift!(dest, src, ("first half of dim1", "second half of dim2")) --> copy!
# _circshift!(dest, src, ("second half of dim1",)) -->
# _circshift!(dest, src, ("second half of dim1", "first half of dim2")) --> copy!
# _circshift!(dest, src, ("second half of dim1", "second half of dim2")) --> copy!
@inline function _circshift!(dest, rdest, src, rsrc,
inds::Tuple{AbstractUnitRange,Vararg{Any}},
shiftamt::Tuple{Integer,Vararg{Any}})
Expand All @@ -662,6 +678,68 @@ function _circshift!(dest, rdest, src, rsrc, inds, shiftamt)
copy!(dest, CartesianRange(rdest), src, CartesianRange(rsrc))
end

# circcopy!
"""
circcopy!(dest, src)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

for 0.6 this should go in the rst manual if exported


Copy `src` to `dest`, indexing each dimension modulo its length.
`src` and `dest` must have the same size, but can be offset in
their indices; any offset results in a (circular) wraparound. If the
arrays have overlapping indices, then on the domain of the overlap
`dest` agrees with `src`.

```julia
julia> src = reshape(collect(1:16), (4,4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

julia> dest = OffsetArray{Int}((0:3,2:5))

julia> circcopy!(dest, src)
OffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5:
8 12 16 4
5 9 13 1
6 10 14 2
7 11 15 3

julia> dest[1:3,2:4] == src[1:3,2:4]
true
```
"""
function circcopy!(dest, src)
dest === src && throw(ArgumentError("dest and src must be separate arrays"))
indssrc, indsdest = indices(src), indices(dest)
if (szsrc = map(length, indssrc)) != (szdest = map(length, indsdest))
throw(DimensionMismatch("src and dest must have the same sizes (got $szsrc and $szdest)"))
end
shift = map((isrc, idest)->first(isrc)-first(idest), indssrc, indsdest)
all(x->x==0, shift) && return copy!(dest, src)
_circcopy!(dest, (), indsdest, src, (), indssrc)
end

# This uses the same strategy described above for _circshift!
@inline function _circcopy!(dest, rdest, indsdest::Tuple{AbstractUnitRange,Vararg{Any}},
src, rsrc, indssrc::Tuple{AbstractUnitRange,Vararg{Any}})
indd1, inds1 = indsdest[1], indssrc[1]
l = length(indd1)
s = mod(first(inds1)-first(indd1), l)
sdf = first(indd1)+s
rd1, rd2 = first(indd1):sdf-1, sdf:last(indd1)
ssf = last(inds1)-s
rs1, rs2 = first(inds1):ssf, ssf+1:last(inds1)
tindsd, tindss = tail(indsdest), tail(indssrc)
_circcopy!(dest, (rdest..., rd1), tindsd, src, (rsrc..., rs2), tindss)
_circcopy!(dest, (rdest..., rd2), tindsd, src, (rsrc..., rs1), tindss)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this could use some comments

end

# At least one of indsdest, indssrc are empty (and both should be, since we've checked)
function _circcopy!(dest, rdest, indsdest, src, rsrc, indssrc)
copy!(dest, CartesianRange(rdest), src, CartesianRange(rsrc))
end

### BitArrays

## getindex
Expand Down
27 changes: 27 additions & 0 deletions doc/stdlib/arrays.rst
Original file line number Diff line number Diff line change
Expand Up @@ -647,6 +647,33 @@ Indexing, Assignment, and Concatenation

See also ``circshift``\ .

.. function:: circcopy!(dest, src)

.. Docstring generated from Julia source

Copy ``src`` to ``dest``\ , indexing each dimension modulo its length. ``src`` and ``dest`` must have the same size, but can be offset in their indices; any offset results in a (circular) wraparound. If the arrays have overlapping indices, then on the domain of the overlap ``dest`` agrees with ``src``\ .

.. code-block:: julia

julia> src = reshape(collect(1:16), (4,4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

julia> dest = OffsetArray{Int}((0:3,2:5))

julia> circcopy!(dest, src)
OffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5:
8 12 16 4
5 9 13 1
6 10 14 2
7 11 15 3

julia> dest[1:3,2:4] == src[1:3,2:4]
true

.. function:: find(A)

.. Docstring generated from Julia source
Expand Down
97 changes: 97 additions & 0 deletions test/TestHelpers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -43,4 +43,101 @@ function with_fake_pty(f)
close(master)
end

# OffsetArrays (arrays with indexing that doesn't start at 1)

# This test file is designed to exercise support for generic indexing,
# even though offset arrays aren't implemented in Base.

module OAs

using Base: Indices, LinearSlow, LinearFast, tail

export OffsetArray

immutable OffsetArray{T,N,AA<:AbstractArray} <: AbstractArray{T,N}
parent::AA
offsets::NTuple{N,Int}
end
typealias OffsetVector{T,AA<:AbstractArray} OffsetArray{T,1,AA}

OffsetArray{T,N}(A::AbstractArray{T,N}, offsets::NTuple{N,Int}) = OffsetArray{T,N,typeof(A)}(A, offsets)
OffsetArray{T,N}(A::AbstractArray{T,N}, offsets::Vararg{Int,N}) = OffsetArray(A, offsets)

(::Type{OffsetArray{T,N}}){T,N}(inds::Indices{N}) = OffsetArray{T,N,Array{T,N}}(Array{T,N}(map(length, inds)), map(indsoffset, inds))
(::Type{OffsetArray{T}}){T,N}(inds::Indices{N}) = OffsetArray{T,N}(inds)

Base.linearindexing{T<:OffsetArray}(::Type{T}) = Base.linearindexing(parenttype(T))
parenttype{T,N,AA}(::Type{OffsetArray{T,N,AA}}) = AA
parenttype(A::OffsetArray) = parenttype(typeof(A))

Base.parent(A::OffsetArray) = A.parent

errmsg(A) = error("size not supported for arrays with indices $(indices(A)); see http://docs.julialang.org/en/latest/devdocs/offset-arrays/")
Base.size(A::OffsetArray) = errmsg(A)
Base.size(A::OffsetArray, d) = errmsg(A)
Base.eachindex(::LinearSlow, A::OffsetArray) = CartesianRange(indices(A))
Base.eachindex(::LinearFast, A::OffsetVector) = indices(A, 1)

# Implementations of indices and indices1. Since bounds-checking is
# performance-critical and relies on indices, these are usually worth
# optimizing thoroughly.
@inline Base.indices(A::OffsetArray, d) = 1 <= d <= length(A.offsets) ? indices(parent(A))[d] + A.offsets[d] : (1:1)
@inline Base.indices(A::OffsetArray) = _indices(indices(parent(A)), A.offsets) # would rather use ntuple, but see #15276
@inline _indices(inds, offsets) = (inds[1]+offsets[1], _indices(tail(inds), tail(offsets))...)
_indices(::Tuple{}, ::Tuple{}) = ()
Base.indices1{T}(A::OffsetArray{T,0}) = 1:1 # we only need to specialize this one

function Base.similar(A::OffsetArray, T::Type, dims::Dims)
B = similar(parent(A), T, dims)
end
function Base.similar(A::AbstractArray, T::Type, inds::Tuple{UnitRange,Vararg{UnitRange}})
B = similar(A, T, map(length, inds))
OffsetArray(B, map(indsoffset, inds))
end

Base.similar(f::Union{Function,DataType}, shape::Tuple{UnitRange,Vararg{UnitRange}}) = OffsetArray(f(map(length, shape)), map(indsoffset, shape))

Base.reshape(A::AbstractArray, inds::Tuple{UnitRange,Vararg{UnitRange}}) = OffsetArray(reshape(A, map(length, inds)), map(indsoffset, inds))

@inline function Base.getindex{T,N}(A::OffsetArray{T,N}, I::Vararg{Int,N})
checkbounds(A, I...)
@inbounds ret = parent(A)[offset(A.offsets, I)...]
ret
end
@inline function Base._getindex(::LinearFast, A::OffsetVector, i::Int)
checkbounds(A, i)
@inbounds ret = parent(A)[offset(A.offsets, (i,))[1]]
ret
end
@inline function Base._getindex(::LinearFast, A::OffsetArray, i::Int)
checkbounds(A, i)
@inbounds ret = parent(A)[i]
ret
end
@inline function Base.setindex!{T,N}(A::OffsetArray{T,N}, val, I::Vararg{Int,N})
checkbounds(A, I...)
@inbounds parent(A)[offset(A.offsets, I)...] = val
val
end
@inline function Base._setindex!(::LinearFast, A::OffsetVector, val, i::Int)
checkbounds(A, i)
@inbounds parent(A)[offset(A.offsets, (i,))[1]] = val
val
end
@inline function Base._setindex!(::LinearFast, A::OffsetArray, val, i::Int)
checkbounds(A, i)
@inbounds parent(A)[i] = val
val
end

# Computing a shifted index (subtracting the offset)
offset{N}(offsets::NTuple{N,Int}, inds::NTuple{N,Int}) = _offset((), offsets, inds)
_offset(out, ::Tuple{}, ::Tuple{}) = out
@inline _offset(out, offsets, inds) = _offset((out..., inds[1]-offsets[1]), Base.tail(offsets), Base.tail(inds))

indsoffset(r::Range) = first(r) - 1
indsoffset(i::Integer) = 0

end

end
8 changes: 8 additions & 0 deletions test/fft.jl
Original file line number Diff line number Diff line change
Expand Up @@ -326,3 +326,11 @@ for x in (randn(10),randn(10,12))
# note: inference doesn't work for plan_fft_ since the
# algorithm steps are included in the CTPlan type
end

# issue #17896
a = rand(5)
@test fft(a) == fft(view(a,:)) == fft(view(a, 1:5)) == fft(view(a, [1:5;]))
@test rfft(a) == rfft(view(a,:)) == rfft(view(a, 1:5)) == rfft(view(a, [1:5;]))
a16 = convert(Vector{Float16}, a)
@test fft(a16) == fft(view(a16,:)) == fft(view(a16, 1:5)) == fft(view(a16, [1:5;]))
@test rfft(a16) == rfft(view(a16,:)) == rfft(view(a16, 1:5)) == rfft(view(a16, [1:5;]))
Loading