Skip to content

Does ForwardDiff work with ImageTransformations? #128

@arbenede

Description

@arbenede

I am trying to use ForwardDiff to compute the gradient of a cost function defined as the Sum of Square Differences (SSD) between two images with respect to the parameters of an image transformation. In the code shown below, one of the images has been translated by a small amount. This is basically just a toy problem that I designed to understand if ForwardDiff.jl and ImageTransformations.jl play well together. Eventually, I will compute derivatives relative the parameters of different image warps. Notice that I do not want to compute gradients of the pixel intensities, but, say, the 2x2 Jacobian of the translation, like:

using Images
using TestImages
using ImageTransformations
using ForwardDiff

img1 = testimage("cameraman.tif")

y_shift = 0.33
x_shift = -1.76
t = ImageTransformations.Translation(y_shift, x_shift)

img2 = ImageTransformations.warp(img1, t, ImageTransformations.indices_spatial(img1), 0)

function cost(Δ::Vector{T}) where T <: Real
    t = ImageTransformations.Translation(Δ[2], Δ[1])
    img2 = ImageTransformations.warp(img1, t, ImageTransformations.indices_spatial(img1), 0)

    imgg1 = Gray.(img1)
    imgg2 = Gray.(img2)

    mat1 = convert(Array{Float64}, imgg1)
    mat2 = convert(Array{Float64}, imgg2)
    
    @. mat1 = (mat1 - mat2)^2
    SSD = sum(vec(mat1))
    
    return SSD
end

I’m getting this error:

StackOverflowError:

Stacktrace:
  [1] make_typealias(x::Type)
    @ Base ./show.jl:531
  [2] show_typealias(io::IOBuffer, x::Type)
    @ Base ./show.jl:661
  [3] show(io::IOBuffer, x::Type)
    @ Base ./show.jl:816
  [4] show_datatype(io::IOBuffer, x::DataType)
    @ Base ./show.jl:928
  [5] show(io::IOBuffer, x::Type)
    @ Base ./show.jl:819
  [6] print(io::IOBuffer, x::Type)
    @ Base ./strings/io.jl:35
  [7] print_to_string(::String, ::Vararg{Any, N} where N)
    @ Base ./strings/io.jl:135
  [8] string
    @ ./strings/io.jl:174 [inlined]
  [9] floattype
    @ ~/.julia/packages/FixedPointNumbers/HAGk2/src/deprecations.jl:4 [inlined]
 [10] _default_digits(#unused#::Type{ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}}) (repeats 43235 times)
    @ ImageTransformations ~/.julia/packages/ImageTransformations/xYRLH/src/autorange.jl:82
 [11] __round(x::StaticArrays.SVector{2, ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}})
    @ ImageTransformations ~/.julia/packages/ImageTransformations/xYRLH/src/autorange.jl:100
 [12] (::ImageTransformations.var"#6#7"{Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, CoordinateTransformations.Translation{StaticArrays.SVector{2, ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}}}})(i::Int64)
    @ ImageTransformations ~/.julia/packages/ImageTransformations/xYRLH/src/autorange.jl:90
 [13] iterate
    @ ./generator.jl:47 [inlined]
 [14] _collect
    @ ./array.jl:691 [inlined]
 [15] collect_similar
    @ ./array.jl:606 [inlined]
 [16] map
    @ ./abstractarray.jl:2294 [inlined]
 [17] _round(tform::CoordinateTransformations.Translation{StaticArrays.SVector{2, ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}}}; kwargs::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
    @ ImageTransformations ~/.julia/packages/ImageTransformations/xYRLH/src/autorange.jl:89
 [18] _round(tform::CoordinateTransformations.Translation{StaticArrays.SVector{2, ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}}})
    @ ImageTransformations ~/.julia/packages/ImageTransformations/xYRLH/src/autorange.jl:89
 [19] warp!(out::Matrix{Gray{N0f8}}, img::Interpolations.FilledExtrapolation{Gray{N0f8}, 2, Interpolations.BSplineInterpolation{Gray{N0f8}, 2, Matrix{Gray{N0f8}}, Interpolations.BSpline{Interpolations.Linear}, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}, Interpolations.BSpline{Interpolations.Linear}, Gray{N0f8}}, tform::CoordinateTransformations.Translation{StaticArrays.SVector{2, ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}}})
    @ ImageTransformations ~/.julia/packages/ImageTransformations/xYRLH/src/warp.jl:92
 [20] warp(img::Interpolations.FilledExtrapolation{Gray{N0f8}, 2, Interpolations.BSplineInterpolation{Gray{N0f8}, 2, Matrix{Gray{N0f8}}, Interpolations.BSpline{Interpolations.Linear}, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}}, Interpolations.BSpline{Interpolations.Linear}, Gray{N0f8}}, tform::CoordinateTransformations.Translation{StaticArrays.SVector{2, ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}}}, inds::Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}})
    @ ImageTransformations ~/.julia/packages/ImageTransformations/xYRLH/src/warp.jl:88
 [21] warp(img::Matrix{Gray{N0f8}}, tform::CoordinateTransformations.Translation{StaticArrays.SVector{2, ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}}}, inds::Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}, args::Int64; kwargs::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
    @ ImageTransformations ~/.julia/packages/ImageTransformations/xYRLH/src/warp.jl:101
 [22] warp(img::Matrix{Gray{N0f8}}, tform::CoordinateTransformations.Translation{StaticArrays.SVector{2, ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}}}, inds::Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}, args::Int64)
    @ ImageTransformations ~/.julia/packages/ImageTransformations/xYRLH/src/warp.jl:100
 [23] cost(Δ::Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}})
    @ Main ./In[36]:18
 [24] vector_mode_dual_eval(f::typeof(cost), x::Vector{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2, Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}}})
    @ ForwardDiff ~/.julia/packages/ForwardDiff/QOqCN/src/apiutils.jl:37
 [25] vector_mode_gradient(f::typeof(cost), x::Vector{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2, Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}}})
    @ ForwardDiff ~/.julia/packages/ForwardDiff/QOqCN/src/gradient.jl:106
 [26] gradient(f::Function, x::Vector{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2, Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}}}, ::Val{true})
    @ ForwardDiff ~/.julia/packages/ForwardDiff/QOqCN/src/gradient.jl:19
 [27] gradient(f::Function, x::Vector{Float64}, cfg::ForwardDiff.GradientConfig{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2, Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(cost), Float64}, Float64, 2}}}) (repeats 2 times)
    @ ForwardDiff ~/.julia/packages/ForwardDiff/QOqCN/src/gradient.jl:17
 [28] top-level scope
    @ In[37]:1
 [29] eval
    @ ./boot.jl:360 [inlined]
 [30] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String, filename::String)
    @ Base ./loading.jl:1094

Any ideas?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions