Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 26 additions & 26 deletions ext/ForwardDiffStaticArraysExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ using DiffResults: DiffResult, ImmutableDiffResult, MutableDiffResult
end
end

@inline static_dual_eval(::Type{T}, f, x::StaticArray) where T = f(dualize(T, x))
@inline static_dual_eval(::Type{T}, f::F, x::StaticArray) where {T,F} = f(dualize(T, x))

# To fix method ambiguity issues:
function LinearAlgebra.eigvals(A::Symmetric{<:Dual{Tg,T,N}, <:StaticArrays.StaticMatrix}) where {Tg,T<:Real,N}
Expand All @@ -35,13 +35,13 @@ end
ForwardDiff._lyap_div!!(A::StaticArrays.MMatrix, λ::AbstractVector) = ForwardDiff._lyap_div!(A, λ)

# Gradient
@inline ForwardDiff.gradient(f, x::StaticArray) = vector_mode_gradient(f, x)
@inline ForwardDiff.gradient(f, x::StaticArray, cfg::GradientConfig) = gradient(f, x)
@inline ForwardDiff.gradient(f, x::StaticArray, cfg::GradientConfig, ::Val) = gradient(f, x)
@inline ForwardDiff.gradient(f::F, x::StaticArray) where {F} = vector_mode_gradient(f, x)
@inline ForwardDiff.gradient(f::F, x::StaticArray, cfg::GradientConfig) where {F} = gradient(f, x)
@inline ForwardDiff.gradient(f::F, x::StaticArray, cfg::GradientConfig, ::Val) where {F} = gradient(f, x)

@inline ForwardDiff.gradient!(result::Union{AbstractArray,DiffResult}, f, x::StaticArray) = vector_mode_gradient!(result, f, x)
@inline ForwardDiff.gradient!(result::Union{AbstractArray,DiffResult}, f, x::StaticArray, cfg::GradientConfig) = gradient!(result, f, x)
@inline ForwardDiff.gradient!(result::Union{AbstractArray,DiffResult}, f, x::StaticArray, cfg::GradientConfig, ::Val) = gradient!(result, f, x)
@inline ForwardDiff.gradient!(result::Union{AbstractArray,DiffResult}, f::F, x::StaticArray) where {F} = vector_mode_gradient!(result, f, x)
@inline ForwardDiff.gradient!(result::Union{AbstractArray,DiffResult}, f::F, x::StaticArray, cfg::GradientConfig) where {F} = gradient!(result, f, x)
@inline ForwardDiff.gradient!(result::Union{AbstractArray,DiffResult}, f::F, x::StaticArray, cfg::GradientConfig, ::Val) where {F} = gradient!(result, f, x)

@generated function extract_gradient(::Type{T}, y::Real, x::S) where {T,S<:StaticArray}
result = Expr(:tuple, [:(partials(T, y, $i)) for i in 1:length(x)]...)
Expand All @@ -52,24 +52,24 @@ ForwardDiff._lyap_div!!(A::StaticArrays.MMatrix, λ::AbstractVector) = ForwardDi
end
end

@inline function ForwardDiff.vector_mode_gradient(f, x::StaticArray)
@inline function ForwardDiff.vector_mode_gradient(f::F, x::StaticArray) where {F}
T = typeof(Tag(f, eltype(x)))
return extract_gradient(T, static_dual_eval(T, f, x), x)
end

@inline function ForwardDiff.vector_mode_gradient!(result, f, x::StaticArray)
@inline function ForwardDiff.vector_mode_gradient!(result, f::F, x::StaticArray) where {F}
T = typeof(Tag(f, eltype(x)))
return extract_gradient!(T, result, static_dual_eval(T, f, x))
end

# Jacobian
@inline ForwardDiff.jacobian(f, x::StaticArray) = vector_mode_jacobian(f, x)
@inline ForwardDiff.jacobian(f, x::StaticArray, cfg::JacobianConfig) = jacobian(f, x)
@inline ForwardDiff.jacobian(f, x::StaticArray, cfg::JacobianConfig, ::Val) = jacobian(f, x)
@inline ForwardDiff.jacobian(f::F, x::StaticArray) where {F} = vector_mode_jacobian(f, x)
@inline ForwardDiff.jacobian(f::F, x::StaticArray, cfg::JacobianConfig) where {F} = jacobian(f, x)
@inline ForwardDiff.jacobian(f::F, x::StaticArray, cfg::JacobianConfig, ::Val) where {F} = jacobian(f, x)

@inline ForwardDiff.jacobian!(result::Union{AbstractArray,DiffResult}, f, x::StaticArray) = vector_mode_jacobian!(result, f, x)
@inline ForwardDiff.jacobian!(result::Union{AbstractArray,DiffResult}, f, x::StaticArray, cfg::JacobianConfig) = jacobian!(result, f, x)
@inline ForwardDiff.jacobian!(result::Union{AbstractArray,DiffResult}, f, x::StaticArray, cfg::JacobianConfig, ::Val) = jacobian!(result, f, x)
@inline ForwardDiff.jacobian!(result::Union{AbstractArray,DiffResult}, f::F, x::StaticArray) where {F} = vector_mode_jacobian!(result, f, x)
@inline ForwardDiff.jacobian!(result::Union{AbstractArray,DiffResult}, f::F, x::StaticArray, cfg::JacobianConfig) where {F} = jacobian!(result, f, x)
@inline ForwardDiff.jacobian!(result::Union{AbstractArray,DiffResult}, f::F, x::StaticArray, cfg::JacobianConfig, ::Val) where {F} = jacobian!(result, f, x)

@generated function extract_jacobian(::Type{T}, ydual::StaticArray, x::S) where {T,S<:StaticArray}
M, N = length(ydual), length(x)
Expand All @@ -81,7 +81,7 @@ end
end
end

@inline function ForwardDiff.vector_mode_jacobian(f, x::StaticArray)
@inline function ForwardDiff.vector_mode_jacobian(f::F, x::StaticArray) where {F}
T = typeof(Tag(f, eltype(x)))
return extract_jacobian(T, static_dual_eval(T, f, x), x)
end
Expand All @@ -91,15 +91,15 @@ function extract_jacobian(::Type{T}, ydual::AbstractArray, x::StaticArray) where
return extract_jacobian!(T, result, ydual, length(x))
end

@inline function ForwardDiff.vector_mode_jacobian!(result, f, x::StaticArray)
@inline function ForwardDiff.vector_mode_jacobian!(result, f::F, x::StaticArray) where {F}
T = typeof(Tag(f, eltype(x)))
ydual = static_dual_eval(T, f, x)
result = extract_jacobian!(T, result, ydual, length(x))
result = extract_value!(T, result, ydual)
return result
end

@inline function ForwardDiff.vector_mode_jacobian!(result::ImmutableDiffResult, f, x::StaticArray)
@inline function ForwardDiff.vector_mode_jacobian!(result::ImmutableDiffResult, f::F, x::StaticArray) where {F}
T = typeof(Tag(f, eltype(x)))
ydual = static_dual_eval(T, f, x)
result = DiffResults.jacobian!(result, extract_jacobian(T, ydual, x))
Expand All @@ -108,18 +108,18 @@ end
end

# Hessian
ForwardDiff.hessian(f, x::StaticArray) = jacobian(y -> gradient(f, y), x)
ForwardDiff.hessian(f, x::StaticArray, cfg::HessianConfig) = hessian(f, x)
ForwardDiff.hessian(f, x::StaticArray, cfg::HessianConfig, ::Val) = hessian(f, x)
ForwardDiff.hessian(f::F, x::StaticArray) where {F} = jacobian(y -> gradient(f, y), x)
ForwardDiff.hessian(f::F, x::StaticArray, cfg::HessianConfig) where {F} = hessian(f, x)
ForwardDiff.hessian(f::F, x::StaticArray, cfg::HessianConfig, ::Val) where {F} = hessian(f, x)

ForwardDiff.hessian!(result::AbstractArray, f, x::StaticArray) = jacobian!(result, y -> gradient(f, y), x)
ForwardDiff.hessian!(result::AbstractArray, f::F, x::StaticArray) where {F} = jacobian!(result, y -> gradient(f, y), x)

ForwardDiff.hessian!(result::MutableDiffResult, f, x::StaticArray) = hessian!(result, f, x, HessianConfig(f, result, x))
ForwardDiff.hessian!(result::MutableDiffResult, f::F, x::StaticArray) where {F} = hessian!(result, f, x, HessianConfig(f, result, x))

ForwardDiff.hessian!(result::ImmutableDiffResult, f, x::StaticArray, cfg::HessianConfig) = hessian!(result, f, x)
ForwardDiff.hessian!(result::ImmutableDiffResult, f, x::StaticArray, cfg::HessianConfig, ::Val) = hessian!(result, f, x)
ForwardDiff.hessian!(result::ImmutableDiffResult, f::F, x::StaticArray, cfg::HessianConfig) where {F} = hessian!(result, f, x)
ForwardDiff.hessian!(result::ImmutableDiffResult, f::F, x::StaticArray, cfg::HessianConfig, ::Val) where {F} = hessian!(result, f, x)

function ForwardDiff.hessian!(result::ImmutableDiffResult, f, x::StaticArray)
function ForwardDiff.hessian!(result::ImmutableDiffResult, f::F, x::StaticArray) where {F}
T = typeof(Tag(f, eltype(x)))
d1 = dualize(T, x)
d2 = dualize(T, d1)
Expand Down
Loading